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ÖZET 

Bu çalışmada keyfi doğrultuda ortotropik Pasternak zemini ile etkileşen nispeten kalın elips 
geometrili plakların eğilme davranışı incelenmiştir.Mindlin plağı denge denklemlerinde zemin etkisi 
de barındırılmış ve Gâteaux türevi kullanılarak karışık sonlu eleman formülasyonu kurgulanmıştır. 
Sonlu eleman çözümünde izoparametrik dörtgen elemanlar kullanılmıştır. Elemanlar üzerinde 
integraller 2x2 Gauss şeması kullanılarak sayısal olarak hesaplanmıştır. Sayısal çözüm yöntemi 
literatürle doğrulanmış ve parametrik çözümler sunularak eliptikliğin ve zemin parametrelerinin plak 
eğilme davranışına olan etkileri araştırılmıştır.  
 

GİRİŞ 

Plak taşıyıcı sistemler birçok mühendislik uygulamasında kullanım alanı bulan ve sık karşılaşılan 
yapısal elemanlardır. Binalarda döşeme ve temellerde, gemi ve deniz taşıtlarında sıvı basıncına 
maruz kalan gövde parçalarında, zeminle temas halindeki silo ve tank yapılarında kullanılan plak 
elemanlar farklı yükleme ve etkileşim türlerine maruz kalırlar [6]. Uygulamada sıklıkla karşılaşılan 
kare, dikdörtgen, daire ve benzeri basit geometriye sahip plakların incelenmesi için bir çok çalışma 
yapılmış bazı özel durumlar için de kesin çözümler sunulmuştur [4]. Elips geometrisindeki plakların 
mekanik davranışı da birçok araştırmacı tarafından incelenmiştir. Prabhakara and Chia [15] ince 
eliptik plakların büyük çökme problemini pertürbasyon yöntemini kullanarak analitik olarak 
çözmüşlerdir. Kesitte kayma şekil değiştirmelerini dikkate alan Liu ve ark. [10] tabakalı eliptik 
plakların büyük çökmesi için analitik çözüm üretmişlerdir. Vasilenko ve Urusova [11] kollokasyon 
yöntemini kullanarak tabakalı malzemeden üretilmiş eliptik plakların statik davranışını 
incelemişlerdir. Altekin and Altay [3] Ritz metodunu kullanarak ince süper-eliptik plakları incelerken 
sınır koşullarını Lagrange çarpanları ile sağlatmışlardır. Yakın zamanda Altekin [1] ortotrop süper-
eliptik plaklarda noktasal mesnetlerin konumunu optimize ederek, plakta en büyük çökmeyi 
minimize eden bir çalışma yapmıştır. 

Plak zemin etkileşimi problemi, gerek sık karşılaşılmasından, gerekse zeminle etkileşim halinde 
bulunmanın, yapısal davranışını önemli derecede etkilemesinden ötürü, birçok araştırmacı 
tarafından çeşitli açılardan incelenmiştir [2]. Mühendislik yaklaşımı için geliştirilmiş mekanik 
modeller yapı-zemin etkileşim problemlerinde yaygın şekilde kullanılmaktadır. Winkler tarafından 
sunulan ve bugün hala sıklıkla kullanılan yay modeli, Pasternak tarafından yayların birbiriyle bir 
kayma etkisiyle etkileştiklerini varsayan modeli ile ileri taşınmıştır [7]. Rashed [8] Pasternak 
zeminine oturan Reissner plaklarının statik analizi için bir sınır eleman formülasyonu geliştirmiş ve 
daire geometrili plaklar için sonuçlar üretmiştir. Yu ve Syracuse [16] Pasternak zeminine oturan 
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dairesel plakların kapalı çözümünü ince plak teorisine göre vermiştir. Al-Hosani ve ark. [9] Winkler 
zemini ile etkileşen Reissner plağı için sınır eleman yöntemini kullanmış; dikdörtgen ve dairesel 
plaklar için çözümler üretmişlerdir. Wang ve ark. [12] iki parametreli zemine oturan Reissner 
plaklarının temel çözümünü ve sınır integral denklemlerini vermişlerdir. Literatürde, elastik zeminle 
etkileşen dikdörtgen ve daire geometrili plaklar için bir çok çalışma bulunmasına rağmen, elliptik 
geometriye sahip plaklar adına çok az çalışma gerçekleştirilmiştir. Datta [13] Winkler zemini ile 
etkileşen ince eliptik plakların büyük çökme problemini Galerkin yöntemini kullanarak incelemiştir. 
Zhong ve ark. [5] üçgen diferansiyel kuadratür yöntemini Pasternak zeminine oturan nispeten kalın 
plakların eğilme problemine uygulamış ve eliptik plaklar için sonuçlar üretmişlerdir. Söz konusu 
başlıkta yapılan çalışmaların kısıtlı olması yazarları bu doğrultuda çalışmaya yöneltmiştir. Bu 
çalışmada yazarlar keyfi doğrultuda ortotrop Pasternak zemin ile etkileşen eliptik Mindlin 
plaklarının statik yükler altındaki davranışını karışık sonlu elemanlar yöntemini kullanarak 
incelemişlerdir. Düzgün yayılı yük altında ankastre sınır koşullarına sahip eliptik plakların eğilme 
davranışında, zemin parametrelerinin, eliptikliğin derecesinin ve zemin ortotropisinin etkisi 
araştırılmış, parametrik sonuçlar sunulmuştur. 

ALAN DENKLEMLERİ ve ÇÖZÜM YÖNTEMİ 

Doğrusal elastisite denklemleri kullanılarak Mindlin alan denklemleri, keyfi doğrultuda ortotrop 
Pasternak zemininin etkilerini içerecek şekilde genişletilmiştir. Elde edilen denge denklemleri ve 
plak bünye bağıntıları kullanılarak, potansiyel operatör ilkesi ve Gâteaux türevinden yararlanılarak 
karışık sonlu eleman çözümüne uygun fonksiyonel elde edilmiştir. Düğüm noktalarındaki 
bilinmeyenler x , y , ve z  eksenleri doğrultusunda yer değiştirmeler ( 1u u= , 2u v= , 3u w= ), iki 

eksen etrafındaki kesit dönmeleri ( 1Ω , 2Ω ), düğüm noktalarındaki gerilme bileşkeleri ise, iki eğilme 

(K ,M ) bir burulma (T ) momenti, iki eksenel kuvvet ( ,P N ), iki kesme kuvveti ( ,F H )  ve bir 

düzlem içi kesme (Q ) kuvveti olacak şekilde membran etkileri de barındırmakta ve en geniş 
halindedir. 

Alan Denklemleri ve Fonsiyonel 

Keyfi doğrultuda ortotrop Pasternak zemininden Mindlin plağına aktarılan kuvvet yoğunluğu 
koordinat dönüşüm bağıntıları kullanılarak, plak global koordinat takımında ifade edilmiş ve plak-
zemin sisteminin denge denklemine ilave edilmiştir. Karışık sonlu eleman formülasyonuna uygun 
olması bakımından, plak şekil değiştirme alanı hem yer değiştirmeler hem de kuvvet, kuvvet-çifti 
türünden büyüklükler cinsinden tarif edilmiştir. 

Ortotrop Pasternak Zemini: Plak global koordinat takımı ( , )x y  ya da (1,2)  ve zemin ortotrop zemin 

için seçilen ( , )   koordinat takımı, koordinatlar arasındaki   açısı ile Şekil 1. de verilmiştir.  

 

Şekil 1: Plak global koordinat takımı ve zeminde ortotropi doğrultuları 

Bu özel durumda Pasternak zemininde oluşan kesme kuvvetleri, 

3,

3,

V G u

V G u
  

  

=

=
 (1) 

şeklinde olurlar. Burada G  ve G  ortotrop zemin ortamında sırasıyla   ve   doğrultularındaki 

kayma zemin kayma parametreleridir. Zemin ile temas eden taşıyıcı sisteme bu durumda, 

3 , ,p ku V V   = - -  (2) 
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ifadesi ile verilen basınç kuvveti aktarılır. Zemin yerel koordinatlarını ihtiva eden bu ifadede 
koordinatlar arası dönüşüm ilişkileri kullanıldığında global koordinat takımında, 

( )
( )

2 2
3, 3, 3,

2 2
3, 3, 3,

cos 2cos sin sin
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xx yx yy
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G u u u
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
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=

- + +

- - +

 (3) 

şeklinde elde edilir.  

Denge Denklemleri ve Bünye Bağıntıları: Zemin etkisinin ilave edilmesiyle Mindlin plağının denge 
denklemi, 
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 (4) 

şeklinde elde edilir. Elastisite denklemleri yardımıyla elastik malzeme ve doğrusal şekil değiştime 
ilişkileri göz önüne alındığında Mindlin plağında şekil değiştirme alanı, yerdeğiştirme ve kuvvet, 
kuvvet-çifti büyüklükleri cinsinden aşağıdaki gibi tarif edilir. 
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 (5) 

Burada E  elastisite modülü,   poisson oranı, G  kayma modülü, h  plak kalınlığıdır. 

Fonksiyonel: Enerji yöntemine dayalı olan sonlu eleman formülasyonunda, alan denklemlerinden 
uygun bir enerji ifadesine geçilmesi gerekmektedir. Alan denklemlerinin Ly f = 0  yapısında 

potansiyel bir operatöre dönüştürülmesi potansiyellik koşulunun sağlamasına bağlıdır. Burada, L  
türev operatörünü, y  bilinmeyenler vektörü, f  dış etkiler vektörünü temsil etmektedir. 
Potansiyelliği araştırılacak operatör yapı, 

 P Ly f   (6) 

dır. Potansiyellik koşulunun matematiksel ifadesi; “ P  fonksiyonunun y  yönüne göre türevinin *y  

yönündeki toplamı, aynı fonksiyonun *y  yönüne göre türevinin y  yönündeki toplamına eşit 

olmalıdır” şeklindedir. Burada, * ve   birbirinden farklı iki yönü göstermekte, y  yönündeki Gâteaux 
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türevi  dP y;y  ve *y  yönündeki Gâteaux türevi  *dP y;y  biçiminde, y  yönündeki iç çarpım 

...,y  ve *y  yönündeki iç çarpım *...,y  biçiminde gösterilmektedir. Buradan potansiyellik koşulu, 

   d d* *P y;y ,y P y;y ,y   (1.7) 

şeklinde gösterilir. Burada köşeli parantezle gösterilen iç çarpımın ve yönsel türevin tanımlanması 
gerekmektedir. İç çarpım, bir fonksiyon ile başka bir fonksiyon veya değişkenin çarpımının belirli bir 
aralıktaki integralidir. Bu çalışmada fonksiyonel eldesinde kullanılacak olan Gâteaux türevinin 
matematiksel ifadesi, 

         d
1s

s

s

 
 
 

0

P y+ y -P y P y
P y;y =lim = =P y  (1.8) 

şeklindedir [14]. s  bir skaler olmak üzere, fonksiyonelin birinci varyasyonu, 

     
0

d
;

d s

I I s
s




  y η y y P y,f ,y  (1.9) 

şeklindedir. İntegrasyon işlemi gerçekleştirildiğinde, 

 ( ) dI s s  
1

0

y = P y,f ,y   (1.10) 

şeklinde fonksiyonel elde edilir [14].  
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Alt indis gösterimi  ...


 ile  ...

, sırasıyla dinamik ve geometrik sınır koşullarını tanımlamaktadır. 

Ayrıca (^ )  da bilinen sınır koşullarını temsil eder. Eğer (^ )  sınır koşulu terimi belli değilse bu 
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terimler düşer. Sonlu eleman çözümünde dört düğüm noktalı dörtgen elemanlar kullanılmakta ve 
integraller sayısal olarak 2 2  Gauss şeması kullanılarak hesaplanmaktadır.  

SAYISAL ÖRNEKLER 

Sunulan çözüm yönteminin doğrulanması için ilk olarak literatürdeki benzer çalışmalarla 
karşılaştırma yapılmış daha sonra parametrik çözümler yapılarak plak davranışı incelenmiştir. 
Çözümlerde aksi belirtilmedikçe D  plak rijitliği olmak üzere Winkler zemin parametresi 

4 /k ka D , ve zemin kayma parametresi ise 2 /f fG G a D  şeklinde boyutsuzlaştırılmış, elde 

edilen sonuçlar yine boyutsuz olarak sunulmuştur. Eliptik plak geometrisi, plak global eksenleri ve 
zemin yerel eksen takımı Şekil 2 de gösterildiği gibidir. 

 
Şekil 2: Eliptik plak geometrisi ve koordinat takımları 

Doğrulama ve Yakınsama Örneği: Çözüm yöntemi ilk olarak elastik zeminle etkileşen dairesel plak 
çözüm karşılaştırmalarıyla doğrulanmış ve sonlu eleman ağına göre yakınsama durumu 
incelenmiştir. Doğrulama amacı ile Rashed [8] ile Yu ve Syracuse’nin [16] çalışmalarındaki ince 
daire plak problemi çözülmüştür ve karşılaştırma yapılmıştır. Düzgün yayılı yük altındaki ankastre 
mesnetli plak, problemin simetrisi nedeniyle çeyrek olarak ele alınmıştır. Plak kalınlığının, plak 
yarıçapına oranı / 0.01h b   ve plak malzemesinin Poisson’s oranı 0.3’tür. Plak orta noktasındaki 

boyutsuz çökme (w ) ve eğilme momenti ( xxK M  ) değerleri Çizelge 1. de verilmiştir. Boyutsuz 

Winkler zemin parametresi 200k   sabit tutulmuş ve üç farklı zemin kayma parametresi için 

( 300, 28.9fG   ve 3 ) sonuçlar üretilmiştir. Çizelge 1. de m  eleman sayısını göstermek üzere 

yakınsama incelemesi de sunulmuştur. Çizelgeden görüldüğü gibi, değerlerin yakınsaması büyük 
kayma parametreli zeminlerde daha hızlı olmaktadır. Sonuçların karşılaştırıldıkları 
çalışmalardakilerle son derece uyumlu olduğu görülmektedir. 

Çizelge 1: Düzgün yayılı yük etkisindeki dairesel plakta orta noktada boyutsuz çökme ve eğilme 

moment değerleri (
4

1000
wD

w
qb

  , 
2

1000
K

K
qb

  ,q : yayılı yük şiddeti) 

w ̃ K ̃ w ̃ K ̃ w ̃ K ̃
48 0.62 1.75 2.93 8.60 4.74 16.63

108 0.64 1.89 2.95 9.60 4.67 16.79
192 0.65 1.89 2.96 9.92 4.65 17.18
300 0.65 1.88 2.97 9.99 4.65 17.45

0.68 1.86 3.01 9.79 4.64 18.74
0.67 1.78 3.00 10.00 4.55 19.50Yu (1957)

bu
 ç

al
ış

m
a

Gf̃ = 300 G̃f = 28.9 G̃f = 3

Rashed (2000)

m

 

Sabit Alanlı Eliptik Plak: Eliptikliğin derecesinin ve zeminin ortotropik özelliğinin plak eğilme 
davranışını nasıl etkilediği incelenecektir. Bu amaçla sabit kalınlıklı, ankastre mesnetlenmiş ve 
yüzey alanı sabit olacak şekilde geometrisi daireden ( / 1a b  ) elipse doğru ( / 2,3a b  ) değişen 
kalın plakların düzgün yayılı yük altındaki statik analizi yapılmıştır. Plak malzemesinde Poisson’s 
oranı 0.3   seçilmiş ve / 3a b   değerinde / 0.1h b   oranı için belirlenen plak kalınlığı diğer 
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geometriler için de değiştirilmeden kullanılmıştır. Çözümlerde eliptik plağın her iki yarıçapı da 

değişken olduğundan zemin parametreleri 2 2 /k ka b D , /f fG G ab D  şeklinde 

boyutsuzlaştırılmıştır. Boyutsuz zemin yay sabiti 2.88k   ve ortotropik zemin kayma parametreleri 

0.36G   ve 36G   
olarak seçilmiştir. Problemin simetrisinden ötürü  , 0  ve 90aralığında 

kalacak şekilde tam plakta analizler gerçekleştirilmiştir. Plak orta noktasındaki boyutsuzlaştırılmış 

çökme (w ) ve eğilme momenti (K ) değerleri Çizelge 2 de sunulmuştur. Daire plakta beklendiği 
gibi çökme değerinin zemin ortotropi doğrultusundan bağımsız olduğu görülmektedir. Sabit alan 
için sunulan bu sonuçlarda, plak geometrisi, daireden elipse dönüştükçe çökme değerlerinin 

azaldığı görülmüştür. Belli bir /a b  oranı için incelendiğinde çökme parametrelerinin 0    da en 

küçük ve 90   da en büyük değerlerini aldığı söylenebilir. / 2a b   ve 3 oranları için 

karşılaştırıldığında çökme parametrelerindeki farklılık yüzde olarak 0  da 58.4%, 45    de 

55% ve 90   da 48.9% olduğu görülmektedir. Sabit alan çözümünden görüldüğü üzere plak 
çökmeleri eliptiklikteki değişime oldukça duyarlıdır. Eliptiklikle birlikte en büyük değişim ise 

0  de gerçekleşmektedir. 

Çizelge 2: Düzgün yayılı yük altında sabit alanlı eliptik plağın orta noktasında boyutsuzlaştırılmış 

çökme ve eğilme momenti değerleri;
2 2

1000
wD

w
qa b

  ,
 

1000
K

K
qab

   

 

Çizelge 3 de diğer doğrultudaki boyutsuzlaştırılmış eğilme momenti M  ve burulma momenti T  
plak orta noktası için verilmiştir. Eliptikliğin artmasıyla birlikte moment değerlerinin ortotropi 
doğrultusundaki değişimden daha çok etkilendiği görülmektedir. Ortotropi doğrultularının plak 
global eksenleriyle çakışması durumunda plak orta noktasında simetriden ötürü burulma momenti 
oluşmamaktadır. Ortotropi eksenlerinin global eksenlerden uzaklaşmasıyla birlikte mertebe olarak 
eğilme momentleriyle kıyaslandığında küçük burulma momenti değerleri oluşmaktadır. 

Çizelge 3: Düzgün yayılı yük altında sabit alanlı eliptik plağın orta noktasında boyutsuzlaştırılmış 

eğilme ve burulma momenti değerleri;
 

1000
M

M
qab

  ,
 

1000
T

T
qab

   

 

SONUÇ 
Bu çalışmada keyfi doğrultuda ortotrop olarak tanımlanmış Pasternak zeminine oturan, nispeten 
kalın plakların düzgün yayılı yük altındaki statik davranışı incelenmiştir. Doğrusal şekil değiştirme 
ve elastik malzeme kabulü ile Mindlin plağı alan denklemleri sistemin mekanik modellenmesinde 
kullanılmıştır. Problem için karışık sonlu eleman formülasyonu önerilmiş ve çözümler bilgisayar 
ortamında sayısal programlama ile gerçekleştirilmiştir. Sayısal çözüm sürecinde plak bölgesi dört 
düğüm noktalı izoparametrik elemanlar ile tarif edilmiş ve elemanlar üzerinde integraller 2x2 Gauss 
şeması kullanılarak sayısal olarak hesaplanmıştır. Tarif edilen problemin çözümü için önerilen 
çözüm yöntemi ve sayısal analiz süreci literatürle yapılan karşılaştırmalar ile doğrulanmıştır. 
Eliptikliğin ve zemin parametrelerindeki değişimin plağın statik davranışı üzerindeki etkilerini 
incelemek amacıyla parametrik çözümler yapılmış ve sonuçlar tablolar halinde verilip 
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yorumlanmıştır. Birbirleriyle etkileşimli olarak hem eliptiklik derecesinin hem de zemin ortotropi 
özelliklerinin plak eğilme davranışında önemli rol oynadığı görülmüştür. 
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