
 
 
 
 

THE WARPING EFFECT ON THE STRUCTURAL RESPONSE OF SANDWICH EXACT 
HELICAL RODS 

 
Umit N. Aribas 1, Merve Ermis 2, Akif Kutlu 2, Nihal Eratli 2, Mehmet H. Omurtag 2 

 
1 Istanbul Okan University, Department of Civil Engineering, Istanbul, Turkey 

2 Istanbul Technical University, Department of Civil Engineering, Istanbul, Turkey 
 
 
Abstract 
 
The objective of this research is to investigate the influence of cross-sectional warping on the precision of the 
forces/moments of exact conical helices with sandwich rectangular cross-sections. The exact axial geometries of 
conical helices are derived over both Archimedean and logarithmic planar curves. Since the curved structural 
elements generally fall under the influence of torque, the determination of cross-sectional warping included 
torsional rigidity of composite non-circular cross-sections has a great importance. The analyses are performed 
using the mixed finite element method based on Timoshenko beam theory. The cross-sectional warping included 
torsional rigidity of a sandwich rectangular section is determined using a numerical method and the result is used 
in the mixed finite element formulation. Two-noded curved finite elements are used with 12 degrees of freedom 
at per node (three translations, three rotations, two shear forces, one axial force, two bending moments and one 
torque). The shear influence is considered in the analysis. The exact conical helix has fixed boundary conditions 
at both ends and it is under the influence of a uniformly distributed load. The necessary number of finite elements 
is determined by a convergence analysis for the reactions at the supports of the exact conical helix. The results are 
compared with the results obtained using displacement type elements of SAP2000. As a benchmark example, a 
parametric analysis is performed for the cross-sectional warping included maximum absolute forces/moments 
along the length of the exact conical helix over Archimedean and logarithmic planar curves. In order to emphasize 
the importance of the research, the results of the present FE formulation are compared with the FE results obtained 
using the conventional torsional rigidity, which disregards the warping effect. 
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1. Introduction 
 
The design of composite structures yields stiffer/lighter cross-sections compare to traditional materials. Thus, the 
composite structural elements have widespread application fields such as aerospace, biomedicine, marine, 
mechanical/civil engineering industries. The design of composite straight/planar curved rods attracted the interest 
of many researches due to their above mentioned advantages (Abramovich and Livshits 1994; Aguiar et al. 2012; 
Aydogdu 2005; Babuska et al. 2018; Bhimaraddi and Chandrashekhara 1991; Carpentieri et al. 2015; Hu et al. 
1985; Jun et al. 2008; Kapania and Raciti 1989; Kennedy et al. 2011; Khdeir and Reddy 1997; Krishnaswamy et 
al. 1992; Nguyen et al., 2018, 2017; Vo and Thai 2012; Yan et al. 2017). Although the static and dynamic analyses 
of straight/planar curved rods are investigated intensively in the literature, the researches for the design of 
composite helices are quite rare (Çalım 2009; Temel et al. 2005; Yıldırım 1999; Yıldırım and Sancaktar 2000; 
Yousefi and Rastgoo 2011; Yu and Hao 2013). The determination of warping included torsional rigidity has a 
great importance since the applied forces cause torque for the curved structural elements. There are some studies 
in the field of warping included torsional rigidity of orthotropic composite sections in literature (Barretta 2012; 
Darılmaz et al. 2018; El Fatmi and Ghazouani 2011; El Fatmi and Zenzri 2004; Jog and Mokashi 2014; Nouri and 
Gay 1994; Savoia and Tullini 1993; Swanson 1998). However, regarding to the authors’ best knowledge, a research 
in the field of cross-sectional warping included forces/moments of exact conical helices does not exist. 
 
In this research, considering the cross-sectional warping, the absolute maximum forces/moments along the axis of 
exact conical helices over Archimedean and logarithmic planar curves are investigated. In order to emphasize the 
importance of the warping of cross-section, warping included results are compared to the results obtained using 
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the conventional method, which disregards the warping. The exact conical helix geometry is derived over 
associated plane curves (Ermis and Omurtag 2017). The analyses are performed using the mixed finite element 
method. The two-noded curved finite elements have 24 nodal variables in total. The cross-sectional warping 
included torsional rigidity of sandwich rectangular cross-section is determined using the numerical method given 
in Aribas et al. (2019) and it is used in the mixed finite element formulation. The influence of cross-sectional 
warping on the precision of maximum forces/moments along the axis of exact conical helices are investigated. A 
parametric analysis is performed for the taper ratio and the number of the active turns. 
 
 
2. Formulation 
 
2.1. The constitutive equations of orthotropic composites 
The generalized Hooke’s law of an orthotropic material is defined as E , where E  is the elasticity matrix 
of the orthotropic body and  and  are the stress and strain tensors, respectively. The laminated composites 
made of layers with various principle material direction orientations may provide better stiffness and strength. 
Thus, the transformation of the principle axis of orthotropic layers around b-axis of the laminate is introduced 
(Jones 1999), 

1 TT E T E  (2.1) 

where, the transformation matrix is T  and transformed elasticity matrix, stress and strain vectors are E ,  and 
, respectively. The reduction of the constitutive equations of orthotropic body under the assumptions of classical 

rod theory 0n b nb  = = =  yields the constitutive equations of a single orthotropic layer (Yıldırım 1999), where 

t, n and b are the Frenet coordinates. Letting the transformed-reduced stress vector  T
L t bt tn L  =ı  and the 

transformed-reduced strain tensor  T
L t bt tn L  =İ  , the constitutive equation of a layer is defined as 

LL L=ı İ  where, L  is a matrix of orthotropic material constants and L  is the number of layers. The 
displacements at the beam continuum are *

t t n bu u b n = + − , *
n n tu u b= −  and *

b b tu u n= +  (Yousefi and 
Rastgoo 2011), where tu , nu  and bu  are displacements on the axis and t , n  and b  are the rotations of the 
section about the Frenet coordinates. The constitutive equations of a single layer over kinematic relations yield 
(Bhimaraddi and Chandrashekhara 1991), 
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where, the number of the layer is 1,...,L N  and the total number of layers is N . The commas in the subscripts 
denote the partial derivations. The analytical integration of stresses through the thickness of cross-section indicates 
the forces , ,t n bT T T  and moments , ,t n bM M M   on the cross-section, 
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where, the width of the layer is Ln , the directed distances to the bottom and top of the thL  layer are Lb  and 1Lb
−

where b indicates positive upward. By means of the Eqn. (2.3), the constitutive equations of the composite section 
in a matrix form becomes, 
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where, mC , mfC , fmC , fC  are the compliance matrices and mfC , fmC  are the coupling matrices. The cross-
sectional warping included torsional rigidity of composite non-circular sections is determined using the numerical 
method given in Aribas et al. (2019). The results are used in the mixed finite element formulation. 
 
2.2. Functional and mixed finite element formulation 
The exact axial geometry of conical helix over Archimedean and logarithmic planar curves is derived using the 
function given in Ermis and Omurtag (2017). The field equations of an isotropic curved Timoshenko rod (Omurtag 
and Aköz 1992) are extended to laminated composites, 
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  (2.5) 

where, the distributed external force and moment vectors are q  and m , respectively. The force and moment 
vectors are T  and M , respectively. The displacement and cross-sectional rotation vectors are u  and , 
respectively. The functional is derived based on the G۲teaux differential and the potential operator concept (Oden 
and Reddy 2012; Omurtag and Aköz 1994), 
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The linear interpolation functions are used. The two-noded curved finite elements, which have 24 degrees of 
freedom in total, are derived over the exact functions of curvature, torsion and arc length of helix geometry. Shear 
influence is considered and the shear correction factor is 5/6. 
 
 
3. Numerical Example 
 
A parametric study is performed in order to determine the influence of cross-sectional warping on the precision of 
the results (especially on forces/moments) along the axis of exact conical helix over Archimedean and logarithmic 
planar curves. The cross-sectional warping included absolute maximum forces/moments are compared to the 
absolute maximum forces/moments obtained using the conventional method, which disregards the warping effect. 
The function given in Ermis and Omurtag (2017) is used for the exact axial geometry of conical helix. The both 
ends of the exact conical helix are fixed. The parametric analysis is performed by keeping the maximum radius 
constant max 100mmR  and setting the taper ratio to min max/ 0.8R R , 0.6 and 0.4. For each taper ratio, the 
number of the active turns is set to 2n , 4 and 6. The exact axial geometry of conical helix is generated using a 
constant pitch angle 5 . There is a uniformly distributed vertical load 0.25N/m along the axis of the exact 
conical helix. The maximum influence of cross-sectional warping on torsional rigidity of sandwich sections is 
obtained for 0.3b h  and Core / 0.7h h  in the case of h b  within the investigations in Aribas et al. 
(2019) where b  is the width and h  is the thickness of the laminate. Thus, the width, thickness of the laminate and 
the thickness of the core are 3mmb , 10mmh  and core 7mmh , respectively. The core is made of 
magnesium and the faces are steel. The Young’s modulus, shear modulus and Poisson’s ratio of magnesium are 
45.0 GPa, 17.442 GPa and 0.29, respectively. The Young’s modulus, shear modulus and Poisson ratio of steel are 

210.0 GPa, 80.769 GPa and 0.3, respectively. The warping included average torsional rigidity tGI  of the sandwich 
cross-section is 1.85Nm2. The convergence analysis for the given exact conical helices is performed in Aribas et 
al. (2019) and it is stated that the results obtained using 600 mixed type curved elements are in an excellent 
agreement with the results of displacement type straight elements of SAP2000. In this example, the cross-sectional 
warping included maximum absolute forces/moments along the axis of exact conical helix are compared to the 
maximum absolute results obtained using conventional method which disregards the warping (Tables 1 and 2). 
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Table 1. The warping included maximum absolute forces , ,t n bT T T  and moments , ,t n bM M M  along the 

axis of exact conical helix over Archimedean planar curve compare to the maximum forces , ,t n bT T T  and 
moments , ,t n bM M M , which disregard warping. The units are N for forces and Nm for moments. 
 
 2n =    4n =   6n =  
 0.8 =   0.6 =  0.4 =   0.8 =   0.6 =  0.4 =   0.8 =   0.6 =  0.4 =  

tT  0.0183 0.0195 0.0205  0.0326 0.0359 0.0383  0.0458 0.0496 0.0520 

tT  0.0123 0.0124 0.0121  0.0268 0.0269 0.0262  0.0411 0.0408 0.0396 

nT  0.0072 0.0085 0.0100  0.0074 0.0115 0.0153  0.0069 0.0121 0.0168 

nT  0.0007 0.0010 0.0012  0.0012 0.0021 0.0028  0.0016 0.0030 0.0040 

bT  0.1486 0.1394 0.1285  0.3012 0.2865 0.2671  0.4533 0.4325 0.4045 

bT  0.1495 0.1413 0.1309  0.3024 0.2888 0.2703  0.4546 0.4350 0.4079 

tM  0.0127 0.0101 0.0079  0.0257 0.0208 0.0163  0.0388 0.0314 0.0247 

tM  0.0129 0.0102 0.0079  0.0261 0.0210 0.0165  0.0392 0.0316 0.0249 

nM  0.0067 0.0060 0.0054  0.0071 0.0068 0.0063  0.0075 0.0074 0.0071 

nM  0.0058 0.0052 0.0047  0.0059 0.0054 0.0049  0.0061 0.0057 0.0052 

bM  0.0013 0.0012 0.0010  0.0025 0.0022 0.0022  0.0036 0.0032 0.0030 

bM  0.0010 0.0007 0.0003  0.0021 0.0015 0.0012  0.0032 0.0025 0.0021 
 
Table 2. The warping included maximum absolute forces , ,t n bT T T   and moments , ,t n bM M M  along the 

axis of exact conical helix over logarithmic planar curve compare to the maximum forces , ,t n bT T T  and 
moments , ,t n bM M M , which disregard warping. The units are N for forces and Nm for moments. 
 

 2n =   4n =   6n =  
 0.8 =  0.6 =  0.4 =   0.8 =  0.6 =  0.4 =   0.8 =  0.6 =  0.4 =  

tT  0.0183 0.0193 0.0195  0.0325 0.0355 0.0369  0.0457 0.0490 0.0502 

tT  0.0123 0.0122 0.0113  0.0267 0.0265 0.0248  0.0409 0.0402 0.0380 

nT  0.0072 0.0085 0.0097  0.0074 0.0115 0.0151  0.0070 0.0121 0.0167 

nT  0.0007 0.0010 0.0011  0.0012 0.0021 0.0028  0.0016 0.0030 0.0040 

bT  0.1480 0.1369 0.1215  0.3001 0.2817 0.2545  0.4516 0.4255 0.3861 

bT  0.1490 0.1387 0.1240  0.3013 0.2841 0.2578  0.4530 0.4281 0.3896 

tM  0.0126 0.0098 0.0069  0.0256 0.0201 0.0146  0.0386 0.0305 0.0222 

tM  0.0128 0.0098 0.0069  0.0259 0.0203 0.0147  0.0390 0.0307 0.0223 

nM  0.0067 0.0060 0.0053  0.0071 0.0068 0.0062  0.0075 0.0074 0.0070 

nM  0.0058 0.0053 0.0046  0.0059 0.0055 0.0050  0.0061 0.0057 0.0053 

bM  0.0013 0.0011 0.0009  0.0025 0.0021 0.0020  0.0036 0.0031 0.0028 

bM  0.0010 0.0007 0.0003  0.0021 0.0014 0.0010  0.0032 0.0024 0.0018 
 
The cross-sectional warping included maximum absolute forces tT , nT  and moments nM , bM  of exact 
conical helices over both Archimedean and logarithmic planar curves are greater than their corresponding results 
obtained disregarding the warping effect (Tables 1 and 2). The force tT  of both exact conical helices increases 

as the taper ratio   decreases. However, the force obtained using the conventional method tT  of exact conical 

helix over logarithmic planar curve decreases as   decreases. The forces tT  and tT  of both exact conical helices 

increases as the number of the active turns n  increases. The forces nT  and nT  of both exact conical helices 
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increases as   decreases. The moments nM , bM , nM  and bM  of both exact conical helices decreases as 

  or n  decreases. 
 
The ratio of the cross-sectional warping included maximum absolute results of both exact conical helices to the 
corresponding maximum absolute results obtained using the conventional method is denoted by  . The ratio 

1   for the force tT  increases as the taper ratio   decreases (Figures 1a-1b) or the number of active turns n  
decreases (Figures 1c-1d). The ratio 1   for the force nT  increases as n  decreases (Figures 2a-2b). The 
maximum ratio 9.68   is obtained for the force nT  in the case of 0.8  and 2n =  compare to the ratios   
of other forces/moments within all cases. The ratio 1   for the force bT  decreases as   decreases (Figures 3a-
3b) or n  decreases (Figures 3c-3d). The minimum ratio 0.98   is obtained for the force bT  in the case of 

0.4  and 2n =  compare to the ratios   of other forces/moments within all cases. The ratio 1   for the 
moment nM  decreases as n  decreases (Figures 4a-4b). The ratio 1   for the moment bM  increases as   
decreases (Figures 5a-5b) or n  decreases (Figures 5c-5d).  
 

 
 

Figure 1. The ratio   for the force tT  of both exact conical helices. (Arc: Archimedean, Log: logarithmic). 
 
 

 
 

Figure 2. The ratio   for the force nT  of both exact conical helices. (Arc: Archimedean, Log: logarithmic). 
 
 

 
 

Figure 3. The ratio   for the force bT  of both exact conical helices. (Arc: Archimedean, Log: logarithmic). 
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Figure 4. The ratio   for the force nM  of both exact conical helices. (Arc: Archimedean, Log: logarithmic). 
 
 

 
 

Figure 5. The ratio   for the force bM  of both exact conical helices. (Arc: Archimedean, Log: logarithmic). 
 
 
4. Conclusions 
 
The influence of warping of cross-section on the precision of forces and moments of exact conical helices is 
investigated using the mixed finite element formulation. The function of the exact axial geometry of conical helices 
given in Ermis and Omurtag (2017) is used. The inclusion procedure of the numerically determined warping 
considered torsional rigidity of rectangular sandwich sections is given in Aribas et al. (2019). 
 
The ratio of warping included forces to the forces obtained disregarding the warping 1   increases as the number 
of the active turns n  decreases for the forces tT  and nT . It increases up to ~9.68 as n  decreases for nT . The 
maximum ratio 9.68   is obtained for nT , 0.8  and 2n = . The ratio 1   increases as   decreases for the 
force tT . However, the ratio 1   decreases as   decreases for the force bT . The minimum ratio 0.98   is 
obtained for bT , 0.4  and 2n = . The ratio 1   of the warping included moments to the moments obtained 
disregarding the warping decreases as n  decreases for the moment nM . However, the ratio 1   increases up to 
~3.07 as n  decreases for the moment bM . The influence of cross-sectional warping on the precision of 
forces/moments is greater for the exact conical helix over logarithmic planar curve except the moment nM  
compare to the exact conical helix over Archimedean planar curve. 
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