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Abstract

The objective of this research is to investigate the influence of cross-sectional warping on the precision of the
forces/moments of exact conical helices with sandwich rectangular cross-sections. The exact axial geometries of
conical helices are derived over both Archimedean and logarithmic planar curves. Since the curved structural
elements generally fall under the influence of torque, the determination of cross-sectional warping included
torsional rigidity of composite non-circular cross-sections has a great importance. The analyses are performed
using the mixed finite element method based on Timoshenko beam theory. The cross-sectional warping included
torsional rigidity of a sandwich rectangular section is determined using a numerical method and the result is used
in the mixed finite element formulation. Two-noded curved finite elements are used with 12 degrees of freedom
at per node (three translations, three rotations, two shear forces, one axial force, two bending moments and one
torque). The shear influence is considered in the analysis. The exact conical helix has fixed boundary conditions
at both ends and it is under the influence of a uniformly distributed load. The necessary number of finite elements
is determined by a convergence analysis for the reactions at the supports of the exact conical helix. The results are
compared with the results obtained using displacement type elements of SAP2000. As a benchmark example, a
parametric analysis is performed for the cross-sectional warping included maximum absolute forces/moments
along the length of the exact conical helix over Archimedean and logarithmic planar curves. In order to emphasize
the importance of the research, the results of the present FE formulation are compared with the FE results obtained
using the conventional torsional rigidity, which disregards the warping effect.
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1. Introduction

The design of composite structures yields stiffer/lighter cross-sections compare to traditional materials. Thus, the
composite structural elements have widespread application fields such as aerospace, biomedicine, marine,
mechanical/civil engineering industries. The design of composite straight/planar curved rods attracted the interest
of many researches due to their above mentioned advantages (Abramovich and Livshits 1994; Aguiar et al. 2012;
Aydogdu 2005; Babuska et al. 2018; Bhimaraddi and Chandrashekhara 1991; Carpentieri et al. 2015; Hu et al.
1985; Jun et al. 2008; Kapania and Raciti 1989; Kennedy et al. 2011; Khdeir and Reddy 1997; Krishnaswamy et
al. 1992; Nguyen et al., 2018, 2017; Vo and Thai 2012; Yan etal. 2017). Although the static and dynamic analyses
of straight/planar curved rods are investigated intensively in the literature, the researches for the design of
composite helices are quite rare (Calim 2009; Temel et al. 2005; Yildirim 1999; Yildirim and Sancaktar 2000;
Yousefi and Rastgoo 2011; Yu and Hao 2013). The determination of warping included torsional rigidity has a
great importance since the applied forces cause torque for the curved structural elements. There are some studies
in the field of warping included torsional rigidity of orthotropic composite sections in literature (Barretta 2012;
Darilmaz et al. 2018; El Fatmi and Ghazouani 2011; El Fatmi and Zenzri 2004; Jog and Mokashi 2014; Nouri and
Gay 1994; Savoia and Tullini 1993; Swanson 1998). However, regarding to the authors’ best knowledge, a research
in the field of cross-sectional warping included forces/moments of exact conical helices does not exist.

In this research, considering the cross-sectional warping, the absolute maximum forces/moments along the axis of

exact conical helices over Archimedean and logarithmic planar curves are investigated. In order to emphasize the
importance of the warping of cross-section, warping included results are compared to the results obtained using
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the conventional method, which disregards the warping. The exact conical helix geometry is derived over
associated plane curves (Ermis and Omurtag 2017). The analyses are performed using the mixed finite element
method. The two-noded curved finite elements have 24 nodal variables in total. The cross-sectional warping
included torsional rigidity of sandwich rectangular cross-section is determined using the numerical method given
in Aribas et al. (2019) and it is used in the mixed finite element formulation. The influence of cross-sectional
warping on the precision of maximum forces/moments along the axis of exact conical helices are investigated. A
parametric analysis is performed for the taper ratio and the number of the active turns.

2. Formulation

2.1. The constitutive equations of orthotropic composites
The generalized Hooke’s law of an orthotropic material is defined as ¢ = Eg, where E is the elasticity matrix

of the orthotropic body and ¢ and & are the stress and strain tensors, respectively. The laminated composites
made of layers with various principle material direction orientations may provide better stiffness and strength.
Thus, the transformation of the principle axis of orthotropic layers around b-axis of the laminate is introduced
(Jones 1999),

c=T'ET' &e=Ec% 2.1)
where, the transformation matrix is T and transformed elasticity matrix, stress and strain vectors are E, G and

€, respectively. The reduction of the constitutive equations of orthotropic body under the assumptions of classical
rod theory o, =0, =7,, =0 yields the constitutive equations of a single orthotropic layer (Yildirmm 1999), where

. . _ T
t, n and b are the Frenet coordinates. Letting the transformed-reduced stress vector 6, ={0, 7, 7, , and the

. - T - . .
transformed-reduced strain tensor &, ={& 7, 7n }L , the constitutive equation of a layer is defined as

G, =B, g, where, B , 1s a matrix of orthotropic material constants and L 1is the number of layers. The
displacements at the beam continuum are u, =u, + b2, —nQ, , u, =u, —b<2, and u, =u, +n 2, (Yousefi and
Rastgoo 2011), where u,, u, and u, are displacements on the axis and £2,, 2 and (2, are the rotations of the

section about the Frenet coordinates. The constitutive equations of a single layer over kinematic relations yield
(Bhimaraddi and Chandrashekhara 1991),

i -5 L }5
0

1911
. ! +ib’t T%b jO “+n
L, b 420
where, the number of the layer is L=1,...,N and the total number of layers is N . The commas in the subscripts
denote the partial derivations. The analytical integration of stresses through the thickness of cross-section indicates
the forces 7,,7,,7, and moments M, M, ,M, on the cross-section,

n=% [0 S od an

2.2)

Tﬂ} L
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(2.3)
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where, the width of the layer is 7, the directed distances to the bottom and top of the L" layer are b, and b,

where b indicates positive upward. By means of the Eqn. (2.3), the constitutive equations of the composite section
in a matrix form becomes,
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b
....................... — (2.4)
‘Qt,t Cfm Mt
Qn,t Mn
Qb,t p L Mb
where, C,, C, ., C,, C, are the compliance matrices and C,,, C, are the coupling matrices. The cross-

sectional warping included torsional rigidity of composite non-circular sections is determined using the numerical
method given in Aribas et al. (2019). The results are used in the mixed finite element formulation.

2.2. Functional and mixed finite element formulation
The exact axial geometry of conical helix over Archimedean and logarithmic planar curves is derived using the
function given in Ermis and Omurtag (2017). The field equations of an isotropic curved Timoshenko rod (Omurtag
and Akoz 1992) are extended to laminated composites,
-T,-q=0 -C, T-CM+Q =0
-M,-txT-m=0 ° -C,T-C, M+u, +txQ=0

where, the distributed external force and moment vectors are q and m, respectively. The force and moment

2.5)

vectors are T and M, respectively. The displacement and cross-sectional rotation vectors are u and Q,

respectively. The functional is derived based on the Gateaux differential and the potential operator concept (Oden
and Reddy 2012; Omurtag and Akoz 1994),

I(y)=—[T,u]-[M_Q]+[txQT]
—g{[(cm)T,T] +[(c, )mT]+[(c, )mT]+[(c, )M,M]}
+[T.a]_+ [M,Ql + [(T —"i“),ul + [(M - I\A/[),QL
~[g.u]-[m.Q]

The linear interpolation functions are used. The two-noded curved finite elements, which have 24 degrees of

freedom in total, are derived over the exact functions of curvature, torsion and arc length of helix geometry. Shear
influence is considered and the shear correction factor is 5/6.

(2.6)

3. Numerical Example

A parametric study is performed in order to determine the influence of cross-sectional warping on the precision of
the results (especially on forces/moments) along the axis of exact conical helix over Archimedean and logarithmic
planar curves. The cross-sectional warping included absolute maximum forces/moments are compared to the
absolute maximum forces/moments obtained using the conventional method, which disregards the warping effect.
The function given in Ermis and Omurtag (2017) is used for the exact axial geometry of conical helix. The both
ends of the exact conical helix are fixed. The parametric analysis is performed by keeping the maximum radius
constant R, =100mm and setting the taper ratio to &= R, / Rsae 0.8, 0.6 and 0.4. For each taper ratio, the
number of the active turns is set to n= 2,4 and 6. The exact axial geometry of conical helix is generated using a
constant pitch angle a="5 . There is a uniformly distributed vertical load 0.25N/m along the axis of the exact
conical helix. The maximum influence of cross-sectional warping on torsional rigidity of sandwich sections is
obtained for A= b/k 0.3 and h_, /h= 0.7 inthe case of > b within the investigations in Aribas et al.

(2019) where b is the width and # is the thickness of the laminate. Thus, the width, thickness of the laminate and
the thickness of the core are b= 3mm, A=10mm and #%__ = 7mm, respectively. The core is made of

magnesium and the faces are steel. The Young’s modulus, shear modulus and Poisson’s ratio of magnesium are
45.0 GPa, 17.442 GPa and 0.29, respectively. The Young’s modulus, shear modulus and Poisson ratio of steel are

210.0 GPa, 80.769 GPa and 0.3, respectively. The warping included average torsional rigidity GI, of the sandwich

cross-section is 1.85Nm?. The convergence analysis for the given exact conical helices is performed in Aribas et
al. (2019) and it is stated that the results obtained using 600 mixed type curved elements are in an excellent
agreement with the results of displacement type straight elements of SAP2000. In this example, the cross-sectional
warping included maximum absolute forces/moments along the axis of exact conical helix are compared to the
maximum absolute results obtained using conventional method which disregards the warping (Tables 1 and 2).
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Table 1. The warping included maximum absolute forces |T, ,’| T, 7;| and moments |M, ?IM,11’ M, b| along the

axis of exact conical helix over Archimedean planar curve compare to the maximum forces |7j AT, 7;| and

moments |M[ M, |, |M, | , which disregard warping. The units are N for forces and Nm for moments.

n=2 n=4 n=6
£=08 £=06 &£=04 £=08 £=06 £=04 £=08 £=06 &£=04

T, 0.0183  0.0195  0.0205 0.0326  0.0359  0.0383 0.0458  0.0496  0.0520
T 0.0123  0.0124  0.0121 0.0268  0.0269  0.0262 0.0411  0.0408  0.0396
T, 0.0072  0.0085  0.0100 0.0074  0.0115  0.0153 0.0069  0.0121  0.0168
T, 0.0007  0.0010  0.0012 0.0012  0.0021  0.0028 0.0016  0.0030  0.0040
T, 0.1486  0.1394  0.1285 03012  0.2865  0.2671 0.4533  0.4325  0.4045
T, 0.1495  0.1413  0.1309 0.3024  0.2888  0.2703 0.4546  0.4350  0.4079
M, 0.0127  0.0101  0.0079 0.0257  0.0208  0.0163 0.0388  0.0314  0.0247
M, 0.0129  0.0102  0.0079 0.0261  0.0210  0.0165 0.0392  0.0316  0.0249
M, 0.0067  0.0060  0.0054 0.0071  0.0068  0.0063 0.0075  0.0074  0.0071
M, 0.0058  0.0052  0.0047 0.0059  0.0054  0.0049 0.0061  0.0057  0.0052
M, 0.0013  0.0012  0.0010 0.0025  0.0022  0.0022 0.0036  0.0032  0.0030
M 0.0010  0.0007  0.0003 0.0021  0.0015  0.0012 0.0032  0.0025  0.0021

>

Table 2. The warping included maximum absolute forces |Z ,1T”’ , 7;| and moments |M, ,1Mn1, Mb| along the
axis of exact conical helix over logarithmic planar curve compare to the maximum forces |7j AT\, | and
moments |M[ M, || M, | , which disregard warping. The units are N for forces and Nm for moments.
n=2 n=4 n==6
=08 ¢£=06 (¢=04 =08 £=06 &£=04 =08 £=06 £=04
T 0.0183  0.0193  0.0195 0.0325  0.0355  0.0369 0.0457  0.0490  0.0502
T 0.0123  0.0122  0.0113 0.0267  0.0265  0.0248 0.0409  0.0402  0.0380
T, 0.0072  0.0085  0.0097 0.0074  0.0115  0.0151 0.0070  0.0121  0.0167
T, 0.0007  0.0010  0.0011 0.0012  0.0021 0.0028 0.0016  0.0030  0.0040
T, 0.1480  0.1369  0.1215 0.3001 0.2817  0.2545 0.4516  0.4255  0.3861
T, 0.1490  0.1387  0.1240 0.3013  0.2841 0.2578 0.4530  0.4281  0.3896
M, 0.0126  0.0098  0.0069 0.0256  0.0201 0.0146 0.0386  0.0305  0.0222
M, 0.0128  0.0098  0.0069 0.0259  0.0203  0.0147 0.0390  0.0307  0.0223
M, 0.0067  0.0060  0.0053 0.0071 0.0068  0.0062 0.0075  0.0074  0.0070
M, 0.0058  0.0053  0.0046 0.0059  0.0055  0.0050 0.0061 0.0057  0.0053
M, 0.0013  0.0011 0.0009 0.0025  0.0021 0.0020 0.0036  0.0031  0.0028
M 0.0010  0.0007  0.0003 0.0021 0.0014  0.0010 0.0032  0.0024  0.0018

>

L

conical helices over both Archimedean and logarithmic planar curves are greater than their corresponding results

The cross-sectional warping included maximum absolute forces |7; |,

and moments |Mn|, |Mb| of exact

obtained disregarding the warping effect (Tables 1 and 2). The force |7;| of both exact conical helices increases
as the taper ratio ¢ decreases. However, the force obtained using the conventional method |7;| of exact conical

helix over logarithmic planar curve decreases as ¢ decreases. The forces |7;| and |7;| of both exact conical helices

T

n

increases as the number of the active turns n increases. The forces and |T,| of both exact conical helices
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increases as £ decreases. The moments |Mn|, |Mb|, |M

and |M b| of both exact conical helices decreases as

n

& or n decreases.

The ratio of the cross-sectional warping included maximum absolute results of both exact conical helices to the
corresponding maximum absolute results obtained using the conventional method is denoted by f. The ratio

F>1 for the force 7, increases as the taper ratio £ decreases (Figures la-1b) or the number of active turns »
decreases (Figures lc-1d). The ratio f#>1 for the force T, increases as n decreases (Figures 2a-2b). The
maximum ratio f=9.68 is obtained for the force 7, in the case of £~ 0.8 and n=2 compare to the ratios S
of other forces/moments within all cases. The ratio <1 for the force 7, decreases as & decreases (Figures 3a-
3b) or n decreases (Figures 3c-3d). The minimum ratio £ =0.98 is obtained for the force 7, in the case of
&= 04 and n=2 compare to the ratios S of other forces/moments within all cases. The ratio f>1 for the
moment M, decreases as n decreases (Figures 4a-4b). The ratio f>1 for the moment M, increases as &
decreases (Figures 5a-5b) or n decreases (Figures 5c-5d).

B B B
11:ﬁ...n:2 197e—esn =2 1.9,,.§:0‘4

1 T 1 1
0.8 06 0.4 0.8

a')‘.(:v'::,?rninkR

NP

06 04 & 4 2 6 4
max (ArC) b) &= Ryyn / Rinax (LOQ) c) n (Arc) d) n (Log)

Figure 1. The ratio S for the force 7, of both exact conical helices. (Arc: Archimedean, Log: logarithmic).
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Figure 2. The ratio f for the force T, of both exact conical helices. (Arc: Archimedean, Log: logarithmic).
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0.985
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4 2
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Figure 3. The ratio [ for the force 7, of both exact conical helices. (Arc: Archimedean, Log: logarithmic).
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Figure 5. The ratio f for the force M, of both exact conical helices. (Arc: Archimedean, Log: logarithmic).

4. Conclusions

The influence of warping of cross-section on the precision of forces and moments of exact conical helices is
investigated using the mixed finite element formulation. The function of the exact axial geometry of conical helices
given in Ermis and Omurtag (2017) is used. The inclusion procedure of the numerically determined warping
considered torsional rigidity of rectangular sandwich sections is given in Aribas et al. (2019).

The ratio of warping included forces to the forces obtained disregarding the warping S > 1 increases as the number

of the active turns n decreases for the forces 7, and T, . It increases up to ~9.68 as n decreases for 7,. The
maximum ratio f=9.68 is obtained for 7,, &= 0.8 and n=2.The ratio f#>1 increases as ¢ decreases for the
force T,. However, the ratio f# <1 decreases as & decreases for the force 7,. The minimum ratio £ =0.98 is
obtained for 7,, &= 0.4 and n=2.The ratio f>1 of the warping included moments to the moments obtained
disregarding the warping decreases as n decreases for the moment M, . However, the ratio £ >1 increases up to

~3.07 as n decreases for the moment M,. The influence of cross-sectional warping on the precision of
forces/moments is greater for the exact conical helix over logarithmic planar curve except the moment M,
compare to the exact conical helix over Archimedean planar curve.
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