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ABSTRACT

The objective of this study is to investigate the forced vibration analysis of axially functionally graded
(FG) straight beams having square and rectangular cross-sections. For this purpose, a mixed finite element
formulation based on Timoshenko beam assumption is implemented. Two-noded straight element is used
to discretize beam domain. The numerical analyses are performed for dynamic rectangular impulsive type
of uniformly distributed load in the Laplace space, next the results are transformed back to time space
numerically using the modified Durbin’s algorithm. A parametric study is performed to investigate the
influence of the material gradients on the dynamic analysis of axially FG beams having different cross-
sections (square and rectangular) and boundary conditions (fixed-fixed, fixed-pinned).
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1. INTRODUCTION

Straight beams are widely used in several fields such as, mechanical, civil, aerospace engineering etc.
with a growing demand in defense, transportation or aerospace structures they are designed for
advanced materials where the required material properties can be selected regarding the specifications
of the application. Composite or functionally graded materials are also preferred due to their strength,
thermal characteristics, and lightness properties in several engineering practice. In the literature, there
are many studies about free vibration analysis of axially FG straight beams. Some of these are cited
as follows: (Wu et al., 2005; Huang et al., 2010; Alshorbagy et al., 2011; Akg6z and Civalek, 2013;
Huang et al., 2013; Li et al., 2013; Rajasekaran and Norouzzadeh Tochaei, 2014; Sarkar and Ganguli,
2014; Zeighampour and Beni, 2015; Rezaiee-Pajand and Hozhabrossadati, 2016; Zhao et al., 2017,
Cao et al., (2018, 2019); Zhou and Zhang, 2019). The dynamic analysis of FG beams are cited as
follows: (Liang and Zhang, 2015) studied dynamic behavior of rotating axially (FG) tapered beams
based on a new dynamic model utilizing the B-spline method. (Calim, 2016a) investigated the
transient analysis of axially FG straight Timoshenko beam with variable cross-section by using
complementary functions method (CFM). (Calim, 2016b) analyzed the free and forced vibration
characteristics of axially FG Timoshenko beams resting on two-parameter viscoelastic foundation by

616



adopting CFM. (Wang and Wu, 2016) examined dynamic responses of an axially FG beam under
thermal environment subjected to a moving harmonic load. (Hao and Wei, 2016) evaluated the
dynamic characteristics of bi-directionally FG Timoshenko beams. (Xie et al., 2018) concerned with
the dynamic response of an axially FG beam with longitudinal-transverse coupling effect under a
moving transverse/longitudinal harmonic load.

In this study, the forced vibration response of axially functionally graded (FG) straight beams is
investigated under dynamic rectangular impulsive type of uniformly distributed load by
implementing a mixed finite element method (MFEM). The solution of the structural problem is
carried out in frequency domain by Laplace transformation and the results are transformed back
to the time domain numerically by means of the Modified Durbin's transformation algorithm
(Dubner and Abate, 1968; Durbin, 1974; Narayanan, 1980). The detailed explanation for mixed
finite element formulation of space curve beam in Laplace domain exists in (Eratl et al., 2014).
The influence of material gradients on the dynamic behaviour of axially FG straight beam is
treated over different cross-sections and boundary conditions. Axially FG material distribution is
assumed as a power-law relation. The square and rectangular cross sections are chosen to have
the same constant area. The fixed-fixed and fixed-pinned boundary conditions are considered.
Verification of the solutions are carried on ANSYS.

2. FORMULATION
2.1. The functional in Laplace Domain

The field equations based on Timoshenko beam theory for the isotropic homogenous elastic spatial
beam exist in (Akoz et al., 1991), and, (Omurtag and Akdz, 1992). Using Cartesian coordinate
system, letting x be the axis of axially functionally graded straight beam and p = p(x) is the material
density, the functional is transformed to frequency domain by Laplace transformation for the dynamic
analysis of the beam as follows:

1=-[0, T, ]+[2.T. ]-[M,.2 |- %ﬁ[wy]
—%i[i,i}%pAsZ[mﬂzh%psZIy[éyﬁy]
e l-(m, 2] [(T-T)a] +[(7,-,)a ]
+[ﬁz,ﬁl+[5y,l\ﬁyl
s is the Laplace transformation parameter, and the Laplace transformed variables are denoted by the

over bars. U, 2, T and M are the displacement, rotation, force and moment in Laplace space,

respectively. A is the cross sectional area, k' is the shear correction factor, 1, is the moment of

inertia, E isthe modulus of elasticity, G is the shear modulus. g, and m, are the distributed external

force and moment in Laplace space. The parentheses in Eq. (1) indicate the inner product, and the
terms with hats are known values on the boundary and the subscripts ¢ and ¢ represent the geometric
and dynamic boundary conditions, respectively. The field equations and functional for elastic spatial
bars exists in (Omurtag and Ak6z, 1992) and for the viscoelastic material case they are given in (Erath
et al., 2014). In this study, the functional is adapted for elastic forced vibration analysis of axially FG
straight beams.
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2.2. The mixed finite element formulation

Two-noded straight finite element is formulated using linear shape functions. Nodal variables are
vertical displacement, rotation of cross-section, transverse shear force, and bending moment. Explicit
form of the mixed finite element matrices of spatial bar exists in (Omurtag and Akédz, 1992).
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Figure 1. Axially FG straight beam, cross-sections and impulsive load.

2.3. Axially FG straight beam geometry

Axially FG material distribution is assumed as a power-law relation along the axis of straight beam
expressed by:

=T+ (h-1)( )’ 2

where f denotes a material property (e.g. modulus of elasticity: E, density: p or modulus of shear:
G ), m is the material gradient index, the subscript "0" and "1" denotes the materials at left and right
ends of the beam, respectively. L is the length of the beam (see Figure 1(a)).

3. RESULTS AND DISCUSSION

The forced vibration analysis of axially FG straight beam that is subjected to a dynamic rectangular
impulsive type of uniformly distributed load q = q(t) (See Figure 1(a)) is investigated. Through the
analysis, different boundary conditions (fixed-fixed and fixed-pinned, Figure 1(b)), and different
cross-sections (rectangular cross-sections and square cross-section, Figure 1(c)) are handled. The
geometrical parameters of straight beam: the length of beam is L =5m. The dimensions of the
rectangular cross-sections for rect! and rect?, and dimension of square cross-section are given in
Figure 1(c). The net areas of the all three cross-sectional geometries (rect?, rect?, square) are equal to
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each other. The material properties are E,=210GPa, p,=7500kg/m®, E, =70GPa,
o, = 2500kg/m*® and the Poisson’s ratio v =0.3. The material gradients are m=0,0.5,1,2,3 in Eq.
(2). The magnitude and the duration of the load are g, = 200kN/m and t,,, =0.021s, respectively

(see Figure 1(d)). The dynamic response of the beam is determined within 0<t<0.08s. The

parameters N =2 and aT =6 are used in analysis for inverse Laplace transformation algorithm
(Erath et al., 2014).

Convergence Analysis: Through the analysis, the vertical displacement u, and the rotation 2, at

midpoint, and the shear force T, and the moment M, at point A (see Figure 1(a)) for an axially FG

straight beam having fixed-fixed boundary condition and material gradient index m =3 are obtained
using 20, 30, 40 finite elements. It is observed that, the results of 30 and 40 elements coincide with
each other (see Figure 2). Consequently, in the following examples, 40 elements are employed.

Verification: The axially FG straight beam having material index m=1, a square cross-section and
fixed-fixed boundary condition is considered and solved via MFEM and ANSY'S for 40 elements. In
ANSYS solution, the beam elements (BEAM188) are used and the axially FG material is defined by
the average value of material properties between each node of the straight beam (41 nodes). The
comparison of MFEM and ANSY'S results are given in Figure 3 for the vertical displacement u, at

midpoint, and the force T, and the moment M at point A of axially FG straight beam. The percent

differences of the results obtained by ANSYS with respect to the results of MFEM are given in Figure
3 for some peak points. It is observed that the results of MFEM and ANSYS are quite in agreement
with each other.

The effect of the material gradient index: The material axially gradient indexes are m=0,0.5,1, 2, 3.

The geometry of cross-sectional area of the beam is square (see Figure 1(c)). Two boundary
conditions are chosen fixed-fixed and fixed-pinned supports (see Figure 1(b)). The time histories of

the vertical displacement u, and the rotation €2, at midpoint of the axially FG beams for fixed-fixed
and fixed- pinned supports are given in Figures 4(a-b) and 5(a-b), respectively. The time histories of
force T, and the moment M, at point A of the axially FG beams fixed at both ends are given in
Figures 4(c-d), respectively. The values of first extrema of the forced vibration zone for the vertical
displacement u, and the rotation <2, at midpoint of the axially FG beam are examined. For this

purpose, the u, and €2, values of first extrema of axially FG beam having m =1, 2, 3 are normalized

with respect to the results of m = 0.5. The percent reductions are tabulated in Table 1 for the both
boundary conditions.

The effect of the cross section: Three cross sectional geometries rect!, rect? and a square are chosen,
(see Figure 1(c)). Their net cross-sectional areas are equal to each other. The axially material gradient
is m=1. The boundary condition is fixed at both ends. The time histories of the vertical displacement

u, and the rotation (2, at midpoint of the axially FG beam are given in Figure 6. The values of first
extrema of the forced vibration zone for the vertical displacement u, and the rotation (2, at midpoint

of the axially FG beam are examined. For this purpose, the u, (see Figure 6(a)) and €2, (see Figure

6(b)) values of first extrema of axially FG beam having square and rect! cross section are normalized
with respect to the results of rect? cross section. The percent reductions can be given as follows: in

the case of the square cross section for u, and €2, they are 43.6% and 46.7%, respectively. In the
case of the rect® cross section for u, and €2, they are 66.1% and 69.0%, respectively.

The effect of the boundary conditions: The boundary conditions are fixed-fixed and fixed-pinned (see
Figure 1(b)). The material gradient is m =1. The geometry of cross-sectional area is square. The

values of first extrema of the vertical displacement u, and the rotation <2, at midpoint of the axially
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FG beam are examined for the forced vibration zone. For this purpose, u, and (2, values of first

extrema of the axially FG beam having fixed-fixed boundary condition (see Figures 4(a-b)) are
normalized with respect to the results of fixed-pinned boundary condition (see Figures 5(a-b)). The

percent reductions are 37.6% for u, and 70.4% for €2, .
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Figure 2(a). Convergence analysis of mixed FE for vertical displacement u, at midpoint of axially
FG beam having square cross section.
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Figure 2(b). Convergence analysis of mixed FEM for rotation (2, at midpoint of axially FG beam
having square cross section.
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Figure 2(c). Convergence analysis of mixed FEM for forces T, at point A of axially FG beam

having square cross section.
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Figure 2(d). Convergence analysis of mixed FE for moment M at point A of axially FG beam

having square cross section.
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Figure 3(a). Comparison of MFEM and ANSY'S for vertical displacement u, at midpoint of axially
FG beam having square cross section. (O: result of MFEM, X: result of ANSYS)
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Figure 3(b). Comparison of MFEM and ANSYS for forces T, at point A of axially FG beam

z

having square cross section. (O: result of MFEM, X: result of ANSYYS)
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Figure 3(c).
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Figure 4(a). The vertical displacement u, at midpoint of axially FG beam having square cross-
section fixed-fixed (fx-fx) boundary condition for m=0,0.5,1, 2, 3.
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Figure 4(b). The rotation £2, at midpoint of axially FG beam having square cross-section fixed-
fixed (fx-fx) boundary condition for m=0,0.5,1, 2, 3.
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Figure 4(c).
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Figure 4(d). The moment M at point A of axially FG beam having square cross-section fixed-

fixed (fx-fx) boundary condition for m=0,0.5,1, 2, 3.
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Figure 5(a). The vertical displacement u, at midpoint of axially FG beam having square cross-

section fixed-pinned (fx-pn) boundary condition for m=0,0.5,1, 2, 3.
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Figure 5(b).
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Figure 6(a). The vertical displacement u, at midpoint of axially FG beam having the material

gradient m =1 fixed-fixed (fx-fx) boundary condition for rect?, rect?, square cross sections.
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Figure 6(b). The rotation €2, at midpoint of axially FG beam having the material gradient m =1

fixed-fixed (fx-fx) boundary condition for rect!, rect?, square cross sections.
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Table 1. Percent reductions in the displacements and rotations for square cross-section in the case
of m=1, 2,3 with respecttom = 0.5.

fixed-fixed fixed-pinned
m
u, (%) Q, (%) u, (%) 2, (%)
1 135 13.1 15.6 155
2 24.0 30.1 27.1 32.5
3 28.5 42.6 31.9 41.8

4. CONCLUSION

The forced vibration analysis of axially functionally graded (FG) straight beams under rectangular
type impulsive load is investigated using the mixed finite element formulation based on the
Timoshenko beam theory. The solutions are obtained in Laplace space and the results are transformed
back to time space by using modified Durbin's algorithm. Some parametric studies are performed to
observe the effect of the material gradient index, boundary condition and the type of cross section on
the forced vibration analysis of the axially FG straight beam. Following remarks can be cited:

e The results of the forced vibration analysis performed by the mixed finite element method
(MFEM) are in a well agreement with ANSYS.

e As the material gradient index (m=0.5,1, 2, 3) increases, a decreasing trend in the amplitude of
u,, and, €2 at the midpoint of the beam is observed for the forced vibration zone

(0<t<t,,, =0.021s). However, this conclusion is not extendable for the free vibration zone
(0.021<t<0.08s) (see Figures 4(a-b), 5(a-b)).

e As expected, a reduction in the displacements is observed as the degree of indeterminacy of the
structure increased (see Figures 4(a)-5(a)).

e An increase in the thickness of the cross-section caused a reduction of the displacement u, and
the rotation <2, at the midpoint of the beam (see Figures 6(a-b)).
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