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ABSTRACT 
 
The objective of this study is to investigate the forced vibration analysis of axially functionally graded 
(FG) straight beams having square and rectangular cross-sections. For this purpose, a mixed finite element 
formulation based on Timoshenko beam assumption is implemented.  Two-noded straight element is used 
to discretize beam domain. The numerical analyses are performed for dynamic rectangular impulsive type 
of uniformly distributed load in the Laplace space, next the results are transformed back to time space 
numerically using the modified Durbin’s algorithm. A parametric study is performed to investigate the 
influence of the material gradients on the dynamic analysis of axially FG beams having different cross-
sections (square and rectangular) and boundary conditions (fixed-fixed, fixed-pinned). 
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1. INTRODUCTION 
 
Straight beams are widely used in several fields such as, mechanical, civil, aerospace engineering etc. 
with a growing demand in defense, transportation or aerospace structures they are designed for 
advanced materials where the required material properties can be selected regarding the specifications 
of the application. Composite or functionally graded materials are also preferred due to their strength, 
thermal characteristics, and lightness properties in several engineering practice. In the literature, there 
are many studies about free vibration analysis of axially FG straight beams. Some of these are cited 
as follows: (Wu et al., 2005; Huang et al., 2010; Alshorbagy et al., 2011; Akgöz and Civalek, 2013; 
Huang et al., 2013; Li et al., 2013; Rajasekaran and Norouzzadeh Tochaei, 2014; Sarkar and Ganguli, 
2014; Zeighampour and Beni, 2015; Rezaiee-Pajand and Hozhabrossadati, 2016; Zhao et al., 2017; 
Cao et al., (2018, 2019); Zhou and Zhang, 2019). The dynamic analysis of FG beams are cited as 
follows: (Liang and Zhang, 2015) studied dynamic behavior of rotating axially (FG) tapered beams 
based on a new dynamic model utilizing the B-spline method. (Çalım, 2016a) investigated the 
transient analysis of axially FG straight Timoshenko beam with variable cross-section by using 
complementary functions method (CFM). (Çalım, 2016b) analyzed the free and forced vibration 
characteristics of axially FG Timoshenko beams resting on two-parameter viscoelastic foundation by 
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adopting CFM. (Wang and Wu, 2016) examined dynamic responses of an axially FG beam under 
thermal environment subjected to a moving harmonic load. (Hao and Wei, 2016) evaluated the 
dynamic characteristics of bi-directionally FG Timoshenko beams. (Xie et al., 2018) concerned with 
the dynamic response of an axially FG beam with longitudinal-transverse coupling effect under a 
moving transverse/longitudinal harmonic load. 
 
In this study, the forced vibration response of axially functionally graded (FG) straight beams is 
investigated under dynamic rectangular impulsive type of uniformly distributed load by 
implementing a mixed finite element method (MFEM). The solution of the structural problem is 
carried out in frequency domain by Laplace transformation and the results are transformed back 
to the time domain numerically by means of the Modified Durbin's transformation algorithm 
(Dubner and Abate, 1968; Durbin, 1974; Narayanan, 1980). The detailed explanation for mixed 
finite element formulation of space curve beam in Laplace domain exists in (Eratlı et al., 2014). 
The influence of material gradients on the dynamic behaviour of axially FG straight beam is 
treated over different cross-sections and boundary conditions. Axially FG material distribution is 
assumed as a power-law relation. The square and rectangular cross sections are chosen to have 
the same constant area. The fixed-fixed and fixed-pinned boundary conditions are considered. 
Verification of the solutions are carried on ANSYS. 
 
 
2. FORMULATION 
 
2.1. The functional in Laplace Domain 
 
The field equations based on Timoshenko beam theory for the isotropic homogenous elastic spatial 
beam exist in (Aköz et al., 1991), and, (Omurtag and Aköz, 1992). Using Cartesian coordinate 
system, letting  x  be the axis of axially functionally graded straight beam and ( )xρ ρ=  is the material 
density, the functional is transformed to frequency domain by Laplace transformation for the dynamic 
analysis of the beam as follows: 
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s  is the Laplace transformation parameter, and the Laplace transformed variables are denoted by the 
over bars. u , Ω , Τ  and Μ  are the displacement, rotation,  force and moment in Laplace space, 
respectively. A  is the cross sectional area, k′  is the shear correction factor, yI  is the moment of 
inertia, E  is the modulus of elasticity, G  is the shear modulus. zq  and ym  are the distributed external 
force and moment in Laplace space. The parentheses in Eq. (1) indicate the inner product, and the 
terms with hats are known values on the boundary and the subscripts ε  and σ  represent the geometric 
and dynamic boundary conditions, respectively. The field equations and functional for elastic spatial 
bars exists in (Omurtag and Aköz, 1992) and for the viscoelastic material case they are given in (Eratlı 
et al., 2014). In this study, the functional is adapted for elastic forced vibration analysis of axially FG 
straight beams.  
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2.2. The mixed finite element formulation  
 
Two-noded straight finite element is formulated using linear shape functions. Nodal variables are 
vertical displacement, rotation of cross-section, transverse shear force, and bending moment. Explicit 
form of the mixed finite element matrices of spatial bar exists in (Omurtag and Aköz, 1992).  
 

 
Figure 1. Axially FG straight beam, cross-sections and impulsive load.  

 
2.3. Axially FG straight beam geometry 
 
Axially FG material distribution is assumed as a power-law relation along the axis of straight beam 
expressed by: 

 ( )0 1 0( ) ( )
mxf x f f f

L
= + −  (2) 

where f  denotes a material property (e.g. modulus of elasticity: E , density: ρ  or modulus of shear: 
G ), m  is the material gradient index, the subscript "0" and "1" denotes the materials at left and right 
ends of the beam, respectively. L  is the length of the beam (see Figure 1(a)). 
 
 
3. RESULTS AND DISCUSSION 
 
The forced vibration analysis of axially FG straight beam that is subjected to a dynamic rectangular 
impulsive type of uniformly distributed load ( )q q t=  (see Figure 1(a)) is investigated. Through the 
analysis, different boundary conditions (fixed-fixed and fixed-pinned, Figure 1(b)), and different 
cross-sections (rectangular cross-sections and square cross-section, Figure 1(c)) are handled. The 
geometrical parameters of straight beam: the length of beam is 5mL = . The dimensions of the 
rectangular cross-sections for rect1 and rect2, and dimension of square cross-section are given in 
Figure 1(c). The net areas of the all three cross-sectional geometries (rect1, rect2, square) are equal to 
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each other. The material properties are 0 210GPaE = , 3
0 7500kg/mρ = , 1 70GPaE = , 

3
1 2500kg/mρ =  and the Poisson’s ratio 0.3υ = . The material gradients are 0,0.5,1,2,3m =  in Eq. 

(2). The magnitude and the duration of  the load are 200kN/moq =  and 0.021sloadt = , respectively 
(see Figure 1(d)). The dynamic response of the beam is determined within 0 0.08st≤ ≤ . The 
parameters 112N =  and 6aT =  are used in analysis for inverse Laplace transformation algorithm 
(Eratlı et al., 2014).  
Convergence Analysis: Through the analysis, the vertical displacement zu  and the rotation yΩ  at 

midpoint, and the shear force zT  and the moment yM  at point A (see Figure 1(a)) for an axially FG 
straight beam having fixed-fixed boundary condition and material gradient index 3m =  are obtained 
using 20, 30, 40 finite elements. It is observed that, the results of 30 and 40 elements coincide with 
each other (see Figure 2). Consequently, in the following examples, 40 elements are employed. 
Verification: The axially FG straight beam having material index 1m = , a square cross-section and 
fixed-fixed boundary condition is considered and solved via MFEM and ANSYS for 40 elements. In 
ANSYS solution, the beam elements (BEAM188) are used and the axially FG material is defined by 
the average value of material properties between each node of the straight beam (41 nodes). The 
comparison of MFEM and ANSYS results are given in Figure 3 for the vertical displacement zu  at 
midpoint, and the force zT  and the moment yM  at point A of axially FG straight beam. The percent 
differences of the results obtained by ANSYS with respect to the results of MFEM are given in Figure 
3 for some peak points. It is observed that the results of MFEM and ANSYS are quite in agreement 
with each other. 
The effect of the material gradient index: The material axially gradient indexes are 0,0.5,1, 2, 3m = . 
The geometry of cross-sectional area of the beam is square (see Figure 1(c)). Two boundary 
conditions are chosen fixed-fixed and fixed-pinned supports (see Figure 1(b)). The time histories of 
the vertical displacement zu  and the rotation yΩ  at midpoint of the axially FG beams for fixed-fixed 
and fixed- pinned supports are given in Figures 4(a-b) and 5(a-b), respectively. The time histories of 
force zT  and the moment yM  at point A of the axially FG beams fixed at both ends are given in 
Figures 4(c-d), respectively. The values of first extrema of the forced vibration zone for the vertical 
displacement zu  and the rotation yΩ  at midpoint of the axially FG beam are examined. For this 

purpose, the zu  and yΩ  values of first extrema of axially FG beam having 1, 2, 3m =  are normalized 
with respect to the results of 0.5m = . The percent reductions are tabulated in Table 1 for the both 
boundary conditions. 
The effect of the cross section: Three cross sectional geometries rect1, rect2 and a square are chosen, 
(see Figure 1(c)). Their net cross-sectional areas are equal to each other. The axially material gradient 
is 1m = . The boundary condition is fixed at both ends. The time histories of the vertical displacement 

zu  and the rotation yΩ  at midpoint of the axially FG beam are given in Figure 6. The values of first 

extrema of the forced vibration zone for the vertical displacement zu  and the rotation yΩ  at midpoint 

of the axially FG beam are examined. For this purpose, the zu  (see Figure 6(a)) and yΩ  (see Figure 
6(b)) values of first extrema of axially FG beam having square and rect1 cross section are normalized 
with respect to the results of rect2 cross section. The percent reductions can be given as follows: in 
the case of the square cross section for zu  and yΩ , they are 43.6% and 46.7%, respectively. In the 

case of the rect1 cross section for zu  and yΩ , they are 66.1% and 69.0%, respectively.  
The effect of the boundary conditions: The boundary conditions are fixed-fixed and fixed-pinned (see 
Figure 1(b)). The material gradient is 1m = . The geometry of cross-sectional area is square. The 
values of first extrema of the vertical displacement zu  and the rotation yΩ  at midpoint of the axially 
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FG beam are examined for the forced vibration zone. For this purpose, zu  and yΩ  values of first 
extrema of the axially FG beam having fixed-fixed boundary condition (see Figures 4(a-b)) are 
normalized with respect to the results of fixed-pinned boundary condition (see Figures 5(a-b)).  The 
percent reductions are 37.6% for zu  and 70.4% for yΩ . 

 
Figure 2(a). Convergence analysis of mixed FE for vertical displacement zu  at midpoint of axially 

FG beam having square cross section. 

 
Figure 2(b). Convergence analysis of mixed FEM for rotation yΩ  at midpoint of axially FG beam 

having square cross section. 
 

 
Figure 2(c). Convergence analysis of mixed FEM for forces zT  at point A of axially FG beam 

having square cross section. 
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Figure 2(d). Convergence analysis of mixed FE for moment yM  at point A of axially FG beam 

having square cross section. 

 
Figure 3(a). Comparison of MFEM and ANSYS for vertical displacement zu  at midpoint of axially 

FG beam having square cross section. (: result of MFEM, ×: result of ANSYS) 
 

 
Figure 3(b). Comparison of MFEM and ANSYS for forces zT  at point A of axially FG beam 

having square cross section. (: result of MFEM, ×: result of ANSYS) 
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Figure 3(c). Comparison of MFEM and ANSYS for moment yM  at point A of axially FG beam 

having square cross section. (: result of MFEM, ×: result of ANSYS)  
 

 
Figure 4(a). The vertical displacement zu  at midpoint of axially FG beam having square cross-

section fixed-fixed (fx-fx) boundary condition for 0,0.5,1, 2, 3m = . 
 

 
Figure 4(b). The rotation yΩ  at midpoint of axially FG beam having square cross-section fixed-

fixed (fx-fx) boundary condition for 0,0.5,1, 2, 3m = . 
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Figure 4(c). The forces zT  at point A of axially FG beam having square cross-section fixed-fixed 

(fx-fx) boundary condition for 0,0.5,1, 2, 3m = . 
 

 
Figure 4(d). The moment yM  at point A of axially FG beam having square cross-section fixed-

fixed (fx-fx) boundary condition for 0,0.5,1, 2, 3m = . 
 

 
Figure 5(a). The vertical displacement zu  at midpoint of axially FG beam having square cross-

section fixed-pinned (fx-pn) boundary condition for 0,0.5,1, 2, 3m = . 
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Figure 5(b). The rotation yΩ  at midpoint of axially FG beam having square cross-section fixed-

pinned (fx-pn) boundary condition for 0,0.5,1, 2, 3m = . 
 

 
Figure 6(a). The vertical displacement zu  at midpoint of axially FG beam having the material 

gradient 1m =  fixed-fixed (fx-fx) boundary condition for rect1, rect2, square cross sections. 
 

 
Figure 6(b). The rotation yΩ  at midpoint of axially FG beam having the material gradient 1m =  

fixed-fixed (fx-fx) boundary condition for rect1, rect2, square cross sections. 
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Table 1. Percent reductions in the displacements and rotations for square cross-section in the case 
of 1, 2, 3m =  with respect to 0.5m = . 

 

m  
fixed-fixed  fixed-pinned 

zu (%) yΩ  (%) zu (%) yΩ  (%) 

1 13.5  13.1 15.6 15.5 
2 24.0 30.1 27.1 32.5 
3 28.5 42.6 31.9 41.8 

 
 
4. CONCLUSION 
 
The forced vibration analysis of axially functionally graded (FG) straight beams under rectangular 
type impulsive load is investigated using the mixed finite element formulation based on the 
Timoshenko beam theory. The solutions are obtained in Laplace space and the results are transformed 
back to time space by using modified Durbin's algorithm. Some parametric studies are performed to 
observe the effect of the material gradient index, boundary condition and the type of cross section on 
the forced vibration analysis of the axially FG straight beam. Following remarks can be cited: 
 
• The results of the forced vibration analysis performed by the mixed finite element method 

(MFEM) are in a well agreement with ANSYS.  
 
• As the material gradient index ( 0.5,1, 2, 3m = ) increases, a decreasing trend in the amplitude of 

zu , and, yΩ  at the midpoint of the beam is observed for the forced vibration zone 
(0 0.021s)loadt t≤ ≤ = . However, this conclusion is not extendable for the free vibration zone 
(0.021 0.08s)t< ≤  (see Figures 4(a-b), 5(a-b)).   

 
• As expected, a reduction in the displacements is observed as the degree of indeterminacy of the 

structure increased (see Figures 4(a)-5(a)). 
 
• An increase in the thickness of the cross-section caused a reduction of the displacement zu  and 

the rotation yΩ  at the midpoint of the beam (see Figures 6(a-b)). 
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