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Abstract

The increased use of axially/transversely functionally graded beams in many applications due to their attractive
properties in strength, stiffness and lightness has resulted in a growing demand for such as mechanical, civil,
mechatronics and aerospace engineering in the design of structures (such as bridges, railways, aircrafts). The
objective of this study is to investigate the free vibration analysis of axially functionally graded (FG) straight
beams by using the mixed finite element formulation based on the Timoshenko beam theory. The functional is
based on the Gateaux differential and the potential operator concept. In the finite element formulation, two-noded
straight element is used to discretize beam domain. In free vibration analysis, the problem of determining the
natural frequencies of a structural system reduces to the solution of a standard eigenvalue problem. A condensation
procedure is applied on the system matrix over the stress resultants. A convergence analysis for the natural
frequencies of axially FG straight beams is carried out and the results are compared with a commercial structural
software. In this study, the axially FG material is modelled by a power-law relation. A parametric study is
performed in order to examine the effect of the material gradient on the natural frequencies of axially FG straight
beams having different cross-sections and boundary conditions. The types of cross section are rectangular and
square, and they have the same cross-sectional area. The boundary conditions are fixed-free, fixed-pinned and
fixed-fixed.
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1. Introduction

In virtue of their outstanding properties such as, strength, thermal characteristics, lightness etc axially/transversely
functionally graded (FG) beams. are preferred in various applications with a growing demand for instance in
mechanical, civil, mechatronics and aerospace engineering as structural members. In the literature, there are many
studies about axially FG beams. Some studies can be cited as follows: Using semi-inverse method, Wu et.al. 2005
investigated the free vibration analysis of axially FG beams. Huang and Li 2010 studied natural frequencies of
axially functionally graded beams with non-uniform cross section by reducing the governing equations to
Fredholm integral equations. Longitudinal free vibration analysis of axially functionally graded microbars is
investigated based on strain gradient elasticity theory by Akgdz and Civalek 2013. The free vibration analysis of
axially exponentially graded beams is performed by Li et.al. 2013. Rajasekaran and Norouzzadeh Tochaei 2014
investigated the free vibration characteristics of axially FG tapered Timoshenko beams using differential transform
element method (DTEM) and differential quadrature element method of the lowest-order (DQEL). Zeighampour
and Beni 2015 examined the vibration of axially FG material (AFGM) nanobeams using the strain gradient theory.
Zhao et.al. 2017 obtained the free vibration solution of axially FG Euler—Bernoulli and Timoshenko beams having
non-uniform cross-sections using a new approach based on Chebyshev polynomials. Using the asymptotic
development method (ADM), Cao et al. 2018 conducted free vibration analysis of axially FG beams. Implementing
asymptotic perturbation approach (APA), Cao et.al. 2019 obtained a simple analytical expression for the free
vibration analysis of non-uniform and non-homogenous beams with different boundary conditions. Zhou and
Zhang 2019 presented an effective approach for uncertain natural frequency analysis of functionally graded beams
with axially varying stochastic material properties.

In this study, free vibration characteristics of axially FG beams based on Timoshenko assumptions are investigated
using a mixed finite element method (MFEM). A two-noded one dimensional element is adopted in the finite
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element formulation. The four degrees of freedom at each node are displacement, cross-sectional rotation, force
and bending moment, respectively. A set of parametric analyses are introduced to reveal the influence of some
parameters (e.g. cross-sections and boundary conditions of beam) on the natural frequencies of axially FG straight
beams.

2. Formulation

2.1. Functional

The field equations and functional for the isotropic homogenous spatial beam based on Timoshenko beam theory
exist in Omurtag and Akoz 1992 and Erath et.al. 2016. Letting xyz denotes the Cartesian coordinate system,
p = p(x) is the material density and x is the axis of the straight beam, the functional of an axially functionally

graded straight beam can be given as follows:
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where u is the displacement, (2 is the rotation, 7" is the force, M is the moment, A is the cross sectional area,
k is the shear correction factor, / is the moment of inertia, £ is the modulus of elasticity, G is the shear
modulus, ¢, and m, are the distributed external force and moment. The parentheses in Eq. (1) indicate the inner
product, and the terms with hats are known values on the boundary and the subscripts & and O represent the
geometric and dynamic boundary conditions, respectively. Once the motion is considered as harmonic for free
vibration analysis, it is clear that, g, = m5 0 . Also, the acceleration terms can be written in the form ®?* u_,u,

and wsz‘LQ‘ , where @ is the natural circular frequency [see Eq.(1)]. The field equations and functional for a

homogenous elastic spatial bar exists in Omurtag and Akodz 1992 and in this study it is reduced and revised for
axially FG straight beams.

2.2 Mixed Finite Element Formulation

Two noded straight finite element is formulated by using linear shape functions. Nodal variables are vertical
displacement, rotation of cross-section, vertical shear force, bending moment. Explicit form of the mixed finite
element matrices of spatial bar exists in Omurtag and Ak6z 1992.

2.3 Axially FG Material
Axially FG material distribution is assumed by a power-law relation along the axis of straight beam as follows:

m

F = fo+(fi—1o) % 2)

where f denotes a material property (e.g. modulus of elasticity: E , density: p or modulus of shear: G ), m is

the material gradient index, the subscript "0" and "1" denotes the materials at left and right hand sides of the beam,
respectively. x is the axis of beam and L is the length of the beam (Fig. 1.a).
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Figure 1. Axially FG straight beam and cross sections
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2.4 Dynamic Analysis
The determining the natural vibration frequencies of a structural system reduces to the solution of a standard
eigenvalue problem,

[K]- @’[M] =u 0 3)
where [K] is the system matrix, [M] is the mass matrix for the entire domain, u is the eigenvector (mode shape)

and o denotes the natural angular frequency of the system. Hence the explicit form of standard eigenvalue problem
in the mixed formulation is
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where F = T, M, " denotes the nodal force and the moment vectors and U= Q, u, ! signifies the

nodal displacement and rotation vectors. To attain consistency between Eqs. (3) and (4), the {F} vector is
eliminated in Eq. (4), which yields to the condensed system matrix [K*]=[K,,]—[K;;]"[K,;]"'[K,,] . Finally,

the eigenvalue problem in the mixed formulation becomes,
[K']- @*[M] U 0 (5)

3. Numerical Examples

Some parametric analyses are performed for an axially functionally graded (AFG) straight beam over two different
rectangular and a square cross-section and various boundary conditions (fixed-fixed, fixed-pinned, fixed-free).
The influence of these parameters on the natural frequency of the AFG straight beam is investigated under the
variation of the material gradient index.

Example 1: An axially FG straight beam having fixed-free boundary condition given in Zhao 2017 is solved in
order to show the performance of the used mixed FE formulation and then the results are compared with each
other. The material and geometrical properties for the axially FG straight beam are: £, =200GPa,

Po = 5700kg/m?, E, == T70GPa, p, =2702kg/m> and the Poisson’s ratio U= 0.3. The material gradient m= 1

in Eq.(2). The dimensionless radius of gyration is r=1/ AL* and the dimensionless natural frequency is

Q=w, p,AL* | E,I . The dimensionless fundamental natural frequency of axially FG beam is 3.896370 in

Zhao 2017 and 3.89613 in mixed FEM for 50 elements, respectively. The dimensionless fundamental natural
frequency of mixed FE result is compared with the result given in Zhao 2017 and the percent difference is -0.01%.

Example 2: The objective of this example is to investigate the effect of material gradients on the natural
frequencies of axially FG straight beam for different cross sections (square and rectangular) where all the cross-
sections are chosen to have the same constant area and boundary conditions (fixed-fixed, fixed-free, fixed-pinned).
The geometrical parameters of FG straight beam: the length of beamis L = 5m, the dimensions of the rectangular

cross-sections for rect' and rect?, and dimension of square cross-section are given in Fig 1.b. The material
properties are E, = 210GPa, p, = 7500kg/m?®, E, = 70GPa, p, = 2500kg/m?, the Poisson’s ratio v= 0.3. The
material gradients are m = 0.5,1,2,3 in Eq. (2). The fundamental natural frequency of axially FG straight beam

with m= 3, having a square cross-section and fixed-free boundary condition is obtained by using ANSYS (2450
SOLID186 elements). Axially FG material is defined by the average value of material properties between each
node of the straight beam (51 nodes). The percent difference of the fundamental natural frequencies of ANSYS
with respect to MFEM (50 elements) is —0.57%. The out-of-plane natural frequencies of axially FG straight beam
are considered and the first three natural frequencies are given in Tables 1-3 for 50 elements. Below, the following
abbreviation "BC" is used for boundary condition.

The effect of boundary condition: The fundamental natural frequency values of beams having fixed-pinned and

fixed-free BCs are normalized with respect to beams having fixed-fixed BC that correspond rect!, square and rect?
cross sections and the percent decreases in the natural frequencies are given in Table 4 for all material gradient
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m=0.5,1,2,3. It is observed that the maximum percent reduction is obtained for rect?, m= 0.5 and fixed-free
boundary condition, the minimum percent reduction is obtained for rect!, m= 3 and fixed-pinned boundary
condition (see Table 4).

The effect of cross-sections: The fundamental natural frequency values of the beams having square and rect? cross-
sections are normalized with respect to the results of beams having rect! cross-section for all boundary conditions.
The percent decreases in the natural frequencies are given in Table 5 for all material gradient indexes
m=0.5,1,2,3. It is observed that the percent reductions in the natural frequencies are not influenced from the

change of material gradient index (see Table 5).

The effect of material gradient index: The fundamental natural frequency values of m = 1,2,3 are normalized

with respect to m= 0.5 that correspond rect', square and rect? cross sections and the percent differences in the
natural frequencies are given for fixed-fixed and fixed-pinned boundary conditions in Fig.2, and for fixed-free
boundary condition in Table 6. As the material gradient index increases, a decreasing trend in the fundamental
natural frequencies is observed for fixed-fixed and fixed-pinned boundary conditions (see Fig.2), however there is
no specific trend for fixed-free boundary condition (see Table 6).

Table 1. The natural frequencies (in Hz) of axially straight beams having fixed-fixed BC.

BC material gradient index (m)
Cross-section Mode No 0.5 1 2 3

1 177.5 171.2 164.1 161.3

rect! 2 404.2 395.6 385.7 381.4

§ 3 671.9 662.8 653.2 648.4
s 1 138.3 133.3 127.8 125.7
§ square 2 335.5 3284 320.6 317.2
=) 3 580.6 572.8 564.6 560.5
1 103.6 99.8 95.7 94.1

rect? 2 263.8 258.3 252.4 249.8

3 4754 469.1 462.5 459.3

Table 2. The natural frequencies (in Hz) of axially straight beams having fixed-pinned BC.

BC material gradient index (m)
Cross-section Mode No 0.5 1 2 3

1 140.7 138.0 133.6 131.6
- rect! 2 368.5 363.4 357.4 355.0
Q 3 643.5 637.6 632.0 629.6
-g 1 106.1 104.0 100.8 99.4
?% square 2 295.8 291.9 287.6 285.8
& 3 542.0 537.3 533.0 531.3
1 77.7 76.2 73.9 72.9
rect? 2 226.6 223.7 220.6 219.4
3 4333 429.7 426.5 4254

Table 3. The natural frequencies (in Hz) of axially straight beams having fixed-free BC.

BC material gradient index (m)
Cross-section Mode No 0.5 1 2 3

1 43.9 45.0 435 41.7
rect! 2 196.9 198.0 197.3 196.4
3 3 442.0 442.0 443.1 444.9
& 1 31.6 324 31.3 30.0
E square 2 151.1 152.0 151.7 151.2
= 3 359.2 359.2 360.4 361.9
1 22.5 23.1 22.3 21.4
rect? 2 112.0 112.7 112.6 112.3
3 278.1 278.1 279.2 280.5
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Table 4. The percent reductions in the fundamental natural frequencies of axially FG beams in the case of fixed-
pinned and fixed-free BCs with respect to fixed-fixed BC.

material gradient index (m)

BC Cross-section 0.5 1 2 3
rect! 20.7% 19.4% 18.6% 18.4%
fixed-pinned square 23.3% 22.0% 21.1% 20.9%
rect? 25.0% 23.6% 22.8% 22.5%
rect! 75.3% 73.7% 73.5% 74.1%
fixed-free square 77.2% 75.7% 75.5% 76.1%
rect? 78.3% 76.9% 76.7% 77.3%

Table 5. The percent reductions in the fundamental natural frequencies of axially FG beams in the case of square
and rect? cross-sections with respect to rect! cross-section.

material gradient index (m)

Cross-section BC 0.5 1 2 3
fixed-fixed 22.1% 22.1% 22.1% 22.1%
square fixed-pinned 24.6% 24.6% 24.6% 24.5%
fixed-free 28.0% 28.0% 28.0% 28.1%
fixed-fixed 41.6% 41.7% 41.7% 41.7%
rect? fixed-pinned 44.8% 44.8% 44.7% 44.6%
fixed-free 48.7% 48.7% 48.7% 48.7%

Table 6. The percent differences in the natural frequencies of axially FG beams in the case of m = 1,2,3 with

respectto m= 0.5.

BC material gradient index (m)
Cross-section Mode No 1 2 3
1 -2.51% 0.91% 5.01%
rect! 2 -0.56% -0.20% 0.25%
] 3 0.00% -0.25% -0.66%
H 1 -2.53% 0.95% 5.06%
i square 2 -0.60% -0.40% -0.07%
= 3 0.00% -0.33% -0.75%
1 -2.67% 0.89% 4.89%
rect? 2 -0.63% -0.54% -0.27%
3 -0.04% -0.43% -0.90%
G—e— -
diff.o diff. % diff.% PR, fX—fX
iff. % fx-pn
al 94 9+
8 8 8
7 74 7
6 6 6
5 54 54
4 4 4
3 34 a2l
2 2 4 :
1' 15 é 25 :‘3 ,I] 15 :Iz 25 é .{ 15 é 25 é
m m m
(a) rect’ (b) square (c) rect?
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Figure 2. The percent differences in the natural frequencies of axially FG beam. The gradient index results of
m = 1,2,3 are normalized with respect to the result of m= 0.5. fx-fx: fixed-fixed BC, fx-pn: fixed pinned BC.

4.Conclusion

The free vibration analysis of axially functionally graded straight beams is investigated using a straight mixed

finite element formulation based on the Timoshenko beam theory. The mixed finite element formulation is verified

with the example given in Zhao 2017 (see Ex.1) and the commercial program ANSYS (Ex.2) for an axially

functionally graded straight beam. Some parametric analysis is performed over material gradient index in order to

observe the effect of the boundary conditions, different rectangular cross-sections and square cross-section

(keeping the area constant) on the dynamic behaviour of axially functionally graded straight beam. Following

remarks can be cited:

e As the degree of indeterminacy of straight beam increases, an increasing trend in the natural frequencies is
observed.

e The natural frequencies of the out-of-plane vibration decrease when the height of cross section is less than the
width of it (keeping the cross-sectional area constant).

e The fundamental natural frequencies are directly influenced from the boundary conditions.

e Although a decreasing trend in the fundamental natural frequencies with respect to increasing material gradient
index is figured out under fixed-fixed and fixed-pinned boundary conditions, it is not possible to extend this
conclusion for fixed-free boundary condition.
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