

STATICS

Equilibrium of the Particle
Dr. Umit N. ARIBAS

Question : A plate that is restricted by three cables is in static condition. Determine the forces of the cables.
($a = 2\text{ m}$ and $W = 300\text{ kN}$).

Solution:

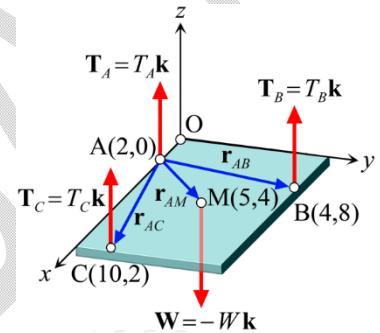
The free body diagram is drawn by using the unknown forces of cables. The moment equilibrium at the point A must be equal to zero in order to satisfy the static equilibrium,

$$\sum M_A = 0; \quad r_{AC} \times T_C + r_{AB} \times T_B + r_{AM} \times W = 0$$

where, the forces and directions vectors are given as follows,

$$\begin{aligned} \mathbf{T}_C &= T_C \mathbf{k} & \mathbf{r}_{AC} &= 8\mathbf{i} + 2\mathbf{j} \\ \mathbf{T}_B &= T_B \mathbf{k} & ; \quad \mathbf{r}_{AB} &= 2\mathbf{i} + 8\mathbf{j} \\ \mathbf{W} &= (-300\mathbf{k}) \text{ kN} & \mathbf{r}_{AM} &= 3\mathbf{i} + 4\mathbf{j} \end{aligned}$$

The cross product is applied using the forces and direction vectors in Cartesian coordinates, the final form is given as,


$$(2T_C + 8T_B - 1200)\mathbf{i} + (-8T_C - 2T_B + 900)\mathbf{j} = \mathbf{0}$$

The both components must be equal to zero,

$$\begin{cases} 2T_C + 8T_B - 1200 = 0 \\ -8T_C - 2T_B + 900 = 0 \end{cases} \quad T_B = 130\text{ kN}; T_C = 80\text{ kN}$$

The cable force T_A is obtained using the equilibrium equation for the whole system,

$$\sum F_z = 0; \quad T_A + 80 + 130 - 300 = 0 \Rightarrow T_A = 90\text{ kN}$$

