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ABSTRACT 

This study examines the moderately large deflections of sandwich elliptical arcs subjected to 
the in-plane loadings using the mixed finite element method. The constitutive equations, 
satisfying the classical beam stress-free surface conditions, are derived based on von Kármán 
nonlinear strains. The nonlinear equations of the mixed finite element formulation are derived 
based on the first variation of the Hellinger-Reissner functional, incorporating field equations 
and boundary conditions. Each node of the two-noded mixed finite elements has twelve degrees 
of freedom. The moderately large deflections of sandwich elliptical arcs, obtained via the mixed 
finite element method, are compared with the four-noded SHELL181 elements of ANSYS. 
Additionally, the effects of stiffener thickness and lamination are investigated in the scope of 
the parametric analyses. 

Keywords: Moderately large deflection; Elliptical arcs; Sandwich beams; Transversely-
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INTRODUCTION 

Laminated composite structures are widely employed in modern engineering due to their 
superior strength-to-weight ratio, tunable mechanical properties, and adaptability for complex 
load conditions. These structures, consisting of multiple fiber-reinforced layers, exhibit 
anisotropic behavior, enabling tailored designs for aerospace, automotive, and marine 
applications [1]. Among laminated composites, sandwich structures offer further advantages by 
combining stiff, high-strength outer skins with a lightweight core, enhancing structural 
efficiency, impact resistance, and buckling resistance [2]. While traditional straight beams have 
been extensively studied, curved laminated composite beams are critical in applications 
requiring enhanced load-bearing capacity and geometric adaptability, such as aerospace frames, 
biomedical implants, and bridge structures. The inherent curvature introduces additional stress 
components, leading to more complex mechanical behavior than straight beams. Nonlinear 
effects become prominent in curved composite structures, particularly at higher loads, where 
geometric nonlinearities significantly influence their response [3]. 

Several studies have examined the geometrically nonlinear behavior of curved beams/panels or 
sandwich structures. Bozhevolnaya and Frostig [4] developed a high-order analytical theory for 
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sandwich panels, incorporating transverse flexibility, shear rigidity, and geometric nonlinearity, 
extending their formulation to sandwich panels with constant curvature. Frostig and Thomsen
[5] further analyzed the nonlinear response of sandwich panels with compliant cores, 
considering thermomechanical loading effects and high-order deformation mechanisms. Duan 
et al. [6] formulated a finite element (FE) model for nonlinear free vibration of thin-walled 
curved beams, integrating flexural–torsional coupling and warping effects. Yau and Yang [7]
introduced a structural approach for bending-tension coupling in curved beams by developing 
an explicit elastic stiffness matrix, providing an alternative to conventional FE techniques. 
Other numerical methods have been explored to analyze nonlinear behavior in curved beams. 
Kurtaran [8] applied the generalized differential quadrature method (GDQM) for the 
geometrically nonlinear transient analysis of deep laminated curved beams, incorporating 
Green–Lagrange strain-displacement relations and first order shear deformation theory. Liao et 
al. [9] developed a quadrature element method (QEM) for curved beams, capturing large three-
dimensional rotations and postbuckling behavior. Li et al. [10] investigated functionally graded 
(FG) curved sandwich beams with a self-adapted auxetic 3D meta-lattice core, analyzing 
graphene-reinforced composite facesheets under nonlinear dynamic conditions. Nasri et al. [11]
analyzed the buckling and nonlinear bending response of 3D-printed polymeric meta-sandwich 
curved beams using first-order shear deformation theory and von-Kármán nonlinearity to derive 
the nonlinear governing equations for beams under uniform transverse and axial loads. Their 
results, validated via the Ritz method, assessed the influence of various geometrical parameters 
on buckling resistance and bending response, optimizing these parameters to enhance buckling 
resistance and minimize transverse deflection.  Serveren et al. [12] conducted a geometrically 
nonlinear dynamic analysis of three-layered curved sandwich beams with a viscoelastic core, 
employing Hamilton’s principle and GDQM to examine resonance and nonlinear vibration 
effects. Wen and Li [13] analyzed the lateral-torsional buckling (LTB) behavior of curved 
beams, identifying neglected end moments and redundant distributed moments, leading to a 
refined FE model for elastic LTB analysis.

Despite these advancements, the moderately large deflection analysis of sandwich elliptical arcs 
remains an open research area, as existing studies have primarily focused on straight beams, 
thin-walled curved beams, or planar sandwich panels. In this study, a mixed finite element 
method is developed for the moderately large deflections of sandwich elliptical arcs, 
incorporating von Kármán nonlinear strains. The nonlinear field equations are derived from the 
first variation of the Hellinger-Reissner functional, ensuring a robust mathematical framework. 
The two-noded mixed finite elements, each possessing twelve degrees of freedom, enable an 
accurate representation of the nonlinear structural response. To validate the proposed method, 
results are compared with four-noded SHELL181 element simulations, ensuring accuracy in 
predicting moderately large deflections. Furthermore, the influence of stiffener thickness and 
lamination configurations on structural behavior is examined. By integrating a mixed finite 
element formulation with nonlinear elasticity theory, this study provides a comprehensive 
computational framework for analyzing curved sandwich beams, offering valuable insights into 
their behavior under large deformations.

FIELD EQUATIONS and FORMULATION

The constitutive equations relating the three-dimensional stress vector and strain vector 
over the elasticity matrix E are defined based on the Hooke’s law as EE [14]. The 
classical beam stress-free surface conditions are satisfied on the constitutive equations and 
given in [15] as L L LL L where, the subscript L presents the layer partition, L is a 3 3
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matrix, T
L t bt tn L

 and T
L t bt tn L

. Letting , ,t n b  are the Frenet 
Coordinates, the displacement field of the sandwich beam is given as, 

 * * *; ;t t n b n n t b b tu u b n u u b u u n  (1) 

where, the displacements on the beam axis are , ,t n bu u u , and the rotations are , ,t n b . Von 
Kármán nonlinear strains are derived by means of the displacement field as, 
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where, the commas in the subscripts denote the partial derivations. The forces , ,t n bF F F  and the 
moments , ,t n bM M M  can be obtained by the integration of stresses based on Von Kármán 
nonlinear strains through the thickness [16]. Finally, the explicit form of the equilibrium 
equations are as follows: 
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where, , ,t n bq q q  are the external distributed forces, , ,t n bm m m  are the external distributed 
moments, and s  is the axial arc length. The position vector r  in terms of the horizontal 

angle , and the gradient of the arc length c  of exact elliptical beams is given in Ermis et 
al. [17]. The first variation of Hellinger Reissner functional [18] is obtained from the field 
equations and boundary conditions such as, 

 u σ σ σ u ˆd d d 0
T T T T

HR
V V

V Vq u t u  (4) 

where, t̂  is the traction vector at the boundary , and the superscripts σ  and u  denote the 
components defined in terms of the forces and displacements. In the scope of the field 
equations, the variational equations in the mixed form are obtained, 
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By linearizing the nonlinear equations [19,20], the functional is obtained and the iterative 
solution approach is performed based on the Newton-Raphson algorithm [18].

NUMERICAL EXAMPLES

In this section, first, the finite element (FE) mesh convergence analyses are performed for the 
moderately large displacements of a sandwich elliptical arc via both the two-noded mixed FEs 
and four-noded SHELL181 elements of ANSYS. The convergence performance of these 
elements is evaluated based on the degrees of freedom (DOFs) they use, and the converged 
results of both elements are compared. Next, the influence of cross-sectional dimensions on the 
difference between the geometrically nonlinear and linear displacements is studied via 
parametric analyses. In all convergence and parametric analyses, the opening angle is 90
. The maximum and minimum radii of the sandwich elliptical arc are max 2mR 2m and 

min 1.6mR 1.6m , respectively. The end with a radius of 2 meters is fixed, and at the other end, all 
displacement and rotation degrees of freedom are fixed except the in-plane displacement
(Figure 1). The width of the cross-section is 0.25mw . Both stiffeners of the sandwich cross-
section have equal thickness. The core is made of Kevlar 49-Epoxy and the stiffeners are Boron 
Epoxy. The Young’s moduli, shear moduli and Poisson’s ratios of Boron Epoxy are 

241.5GPatE , 18.89GPan bE E , 5.18GPatn btG G , 3.45GPanbG , 0.24tn tb

and 0.25nb , respectively. The Young’s moduli, shear moduli and Poisson’s ratios of Kevlar 
49-Epoxy are 76GPatE , 5.56GPan bE E , 2.30GPatn btG G , 1.618GPanbG , 

0.34tn tb , 0.718nb , respectively. The sandwich elliptical arc is subjected to a uniform 
pressure perpendicular to its’ inner surface.
FE Mesh Convergence Analyses

SHELL181 Elements: The moderately large displacements nlbu at the vertical guided fixed 
support of a sandwich elliptical arc (Figure 1) are obtained using 18000, 42000, 93648, 273324 
and 882504 DOFs, respectively (successively corresponding to 0.05m, 0.02m, 0.01m, 0.005m 
and 0.0025m mesh sizes). The thickness of each stiffener is 0.0025msh 0.0025m and the total cross-
sectional thickness is 0.03mh 0.03m . The uniform pressure acting perpendicular to the inner
surface is 2.64barbq 2.64bar . The results are tabulated in Table 1 compared to the displacements of 
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linear analysis 
lbu . It is obtained that the percent difference in 

nlbu , with respect to the 
results obtained using 882504 DOFs, decreases below 1.00% in the analysis performed with 
273324 DOFs. Besides, the percent difference between geometrically nonlinear and linear 
displacements is obtained as -29.93% relative to the results of linear analysis. 

 
Figure 1. (a) Elliptical arc subjected to a uniform pressure, (b) The sandwich cross-section. 

Table 1. FE mesh convergence of the displacements (in meters) for SHELL181 elements. 

DOFs lbu  
nlbu  diff.1% diff.2% 

18000 0.035764 0.024467 15.49 -31.59 
42000 0.035679 0.024622 16.22 -30.99 
93648 0.030957 0.021711 2.48 -29.87 

273324 0.030465 0.021346 0.76 -29.93 
882504 0.030233 0.021185  -29.93 

*Note: the percent difference of moderately large displacements (diff.1%) is given relative to 
882504 DOFs, and the percent difference of geometrically nonlinear and linear displacements 
(diff.2%) is given relative to the linear results. 

Table 2. FE mesh convergence of the displacements (in meters) for the mixed FEs. 

DOFs lbu  nlbu  diff.1% diff.2% 
132 0.030909 0.021219 0.30 -31.35 
192 0.029646 0.020915 -1.14 -29.45 
312 0.029877 0.021113 -0.21 -29.33 
612 0.030037 0.021155 -0.01 -29.57 

1212 0.030000 0.021156 0.00 -29.48 
1812 0.029993 0.021156 0.00 -29.46 
2412 0.029991 0.021156 0.00 -29.46 
3012 0.029990 0.021156  -29.46 

*Note: the percent difference of moderately large displacements (diff.1%) is given relative to 
3012 DOFs, and the percent difference of geometrically nonlinear and linear displacements 
(diff.2%) is given relative to the linear results. 

Mixed FEs: The FE mesh convergence analysis of the above-mentioned problem is performed 
using 132-3012 DOFs, respectively (Table 2). It is obtained that the percent difference in nlbu
, with respect to the results obtained using 3012 DOFs, decreases below 1.00% in the analysis 
performed with 312 DOFs. The geometrically nonlinear mixed FE formulation provides quite 
satisfactory results using fewer degrees of freedom compared to the four-node SHELL181 
elements of ANSYS. The percent differences of linear and geometrically nonlinear 
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displacements obtained by the mixed FEs with 3012 DOFs relative to the SHELL181 elements 
with 882504 DOFs are -0.80% and -0.14%, respectively. Besides, the percent difference 
between geometrically nonlinear and linear displacements is obtained as -29.33% relative to 
the results of linear analysis. 
The thicknesses of stiffeners and cross-section

This section aims to investigate the influence of thicknesses of stiffeners and the cross-section 
on the percent difference between the linear and geometrically nonlinear displacements of 
sandwich elliptical arcs. Thus, the total cross-sectional thickness is set to 0.020mh 0.020m , 0.025m 
and 0.030m, respectively. In each case, the thickness of stiffeners is set to 0.0015msh 0.0015m , 
0.002m and 0.0025m, respectively by keeping the total cross-sectional thickness constant. The 
corresponding geometrically nonlinear displacements 

nlbu , under the same magnitude of 
pressure that the linear displacements are obtained, are illustrated in Figure 2. Then, the percent 
differences of geometrically nonlinear displacements 

nlbu with respect to the linear 

displacements 
lbu are given in Figure 3. 

Figure 2. The geometrically nonlinear and linear displacements.

Figure 3. The percent difference of geometrically nonlinear displacements nlbu with respect 

to the linear displacements lbu . l l
/b bu u h

l
/u h

l
/b : The normalized linear displacements.

It is concluded that a decrease in stiffener thickness and/or an increase in cross-sectional 
thickness results in an increase in the percent difference between geometrically nonlinear and 
linear displacements. The influence of an increase in cross-sectional thickness is greater than 
the stiffener thickness. Although the linear displacement occurs at the section height, the 
minimum absolute percentage difference of the corresponding geometrically nonlinear 
displacement with respect the linear displacement is obtained as 22.54% in the case of 

0.020mh 0.020m and 0.0025msh
p
0.0025m . As the stiffener thickness decreases to 0.0015msh 0.0015m in this 

case, this absolute percent difference increases to 22.57%. However, when the linear 
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displacement reaches four times the section height, this absolute percent difference increases 
up to 52.94%. In cases where the linear displacement value is smaller, the percentage increases 
in the percent differences are greater. As the cross-sectional thickness increases up to 

0.030mh 0.030m and the stiffener thickness decreases to 0.0015msh 0.0015m , the absolute percent 
difference between the geometrically nonlinear and linear displacements increases up to 
61.30% when the linear displacement reaches four times the section height.

CONCLUSIONS

This study focuses on analyzing moderately large deflections in sandwich elliptical arcs 
subjected to in-plane loading, utilizing a mixed finite element method. The constitutive relations 
are formulated based on von Kármán-type geometric nonlinearity and the classical beam stress-
free surface conditions. The mixed finite element formulation is developed by taking the first 
variation of the Hellinger-Reissner functional. Each two-noded mixed finite element has twelve 
degrees of freedom at per node. The deflection results obtained from the proposed mixed finite 
element approach are compared with the four-noded SHELL181 elements. The geometrically 
nonlinear mixed finite elements provide convergent results with fewer degrees of freedom 
compared to the four-node SHELL181 elements of ANSYS. As a conclusion of the parametric 
analysis, it is obtained that the influence of the cross-sectional thickness on the percent 
difference between geometrically nonlinear and linear displacements is greater than the 
stiffener thickness. Although the linear displacement occurs at the section height for the 
minimum cross-sectional thickness and maximum stiffener thickness, the minimum percent 
difference is obtained as -22.54%.
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